Mission type | Communication |
---|---|
Operator | SES |
COSPAR ID | 2013-071A |
SATCAT no. | 39460 |
Website | https://www.ses.com/ |
Mission duration | 15 years (planned) 10 years, 4 months, 23 days (elapsed) |
Spacecraft properties | |
Spacecraft type | GEOStar-2 |
Bus | STAR-2.4 |
Manufacturer | Orbital Sciences Corporation |
Launch mass | 3,170 kg (6,990 lb) |
Power | 5 kW |
Start of mission | |
Launch date | 3 December 2013, 22:41:00 UTC |
Rocket | Falcon 9 v1.1 |
Launch site | Cape Canaveral, SLC-40 |
Contractor | SpaceX |
Entered service | February 2014 |
Orbital parameters | |
Reference system | Geocentric orbit |
Regime | Geostationary orbit |
Longitude | 95° East |
Transponders | |
Band | 33 Ku-band |
Bandwidth | 36 MHz |
Coverage area | South Asia, India, Indo-China, Thailand, Vietnam, Laos |
SES-8 is a geostationary Communications satellite operated by SES SES-8 was successfully launched on SpaceX Falcon 9 v1.1 on 3 December 2013, 22:41:00 UTC. [1]
It was the first flight of any SpaceX launch vehicle to a supersynchronous transfer orbit, [2] an orbit with a somewhat larger apogee than the more usual geostationary transfer orbit (GTO) typically utilised for communication satellites. [3]
The SES-8 satellite is built on the STAR-2.4 satellite bus by Orbital Sciences Corporation (OSC). [4] It is the sixth satellite of that model to be built for SES. [5]
The communications satellite is initially co-located at 95° East [6] with NSS-6 in order to provide communications bandwidth growth capacity in the Asia-Pacific region, specifically aimed at high-growth markets in South Asia and Indo-China, "as well as provide expansion capacity for satellite television (direct-to-home - DTH), Very-small-aperture terminal (VSAT) and government applications". [5] [7]
The launch of SES-8 was the seventh launch of the Falcon 9 launch vehicle, and the second launch of the Falcon 9 v1.1. SES paid a discounted price — "well under US$60 million" — for the launch since it was the inaugural geostationary launch on the Falcon 9. When originally contracted, in 2011 the putative launch date was early 2013. [3]
The launch was the second launch of the Falcon 9 v1.1 version of the rocket, a longer rocket with 60% more thrust than the Falcon 9 v1.0 vehicle, [8] and the first launch of the larger v1.1 rocket using the rebuilt erector structure at SpaceX' Cape Canaveral SLC-40. [4] As a result, a number of systems on the launch vehicle was flown for only the second time, while several parts of the ground infrastructure at Cape Canaveral were used in a launch for the first time. These include: [9]
In order to maximize the propellant available for the launch of SES-8 into geostationary transfer orbit (GTO), SpaceX did not attempt a controlled descent test of the first-stage booster as they did on the previous Falcon 9 v1.1 flight in September 2013. [11]
In the previous launch of the Falcon 9 v1.1 — the first launch of the much larger version of the rocket with new Merlin 1D engines — on 29 September 2013, SpaceX was unsuccessful in reigniting the second stage Merlin 1D vacuum engine once the rocket had deployed its primary payload (CASSIOPE) and all of its nanosat secondary payloads. [12] The restart failure was determined to be frozen igniter fluid lines in the second-stage Merlin 1D engine. A minor redesign was done to address the problem by adding additional insulation to the lines. [2]
A second burn of the upper stage was required, and was completed successfully, during the SES-8 mission [13] in order to place the SES-8 telecommunications satellite into the highly elliptical supersynchronous orbit for satellite operator SES to effect a plane change and orbit circularisation. [2] [12]
The Falcon 9 upper stage used to launch SES-8 was left in a decaying elliptical low Earth orbit which, by September 2014, had decayed and re-entered the atmosphere of Earth. [14]
Both stages of the Falcon 9 arrived at Cape Canaveral for processing before 2 October 2013, after both had trouble-free test firings at the SpaceX Rocket Development and Test Facility at McGregor, Texas. [5] A launch attempt on 25 November 2013, with a planned liftoff at 22:37:00 UTC was scrubbed following a reported off-nominal condition in the liquid oxygen tank and supply lines of the first-stage booster that could not be resolved within the approximately one-hour launch window. A launch date of 28 November 2013 was announced, three days later, being the next opportunity for the launch site on Earth to be in alignment to achieve the target orbit.
Attempt | Planned | Result | Turnaround | Reason | Decision point | Weather go (%) | Notes |
---|---|---|---|---|---|---|---|
1 | 25 Nov 2013, 10:37:00 pm | Hold and countdown restart | — | Launch delay | 25 Nov 2013, 10:24 pm (T–00:13:00) | 80% | Launch window: 22:37–23:43 UTC [15] |
2 | 25 Nov 2013, 10:54:00 pm | Hold and countdown restart | 0 days, 0 hours, 17 minutes | Automatic abort | 25 Nov 2013, 10:47 pm (T–00:06:11) | 80% | Launch window: 22:37–23:43 UTC [15] |
3 | 25 Nov 2013, 11:30:00 pm | Scrubbed | 0 days, 0 hours, 36 minutes | Off-nominal condition | 25 Nov 2013, 11:26 pm (T–00:03:41) | 80% | Launch window: 22:37–23:43 UTC [15] |
4 | 28 Nov 2013, 10:39:00 pm | Hold and countdown restart | 2 days, 23 hours, 9 minutes | Automatic abort | 28 Nov 2013, 10:38 pm (T–00:00:30) | 90% | Launch window: 22:39–23:44 UTC [16] |
5 | 28 Nov 2013, 11:44:00 pm | Scrubbed | 0 days, 1 hour, 5 minutes | Data review not completed | 28 Nov 2013, 11:43 pm (T–00:00:48) | 90% | Launch window: 22:39–23:44 UTC [16] |
6 | 3 Dec 2013, 10:41:00 pm | Successful launch | 4 days, 22 hours, 57 minutes | 90% | Launch window: 22:41–00:07 UTC [17] |
Cascade, Smallsat and Ionospheric Polar Explorer (CASSIOPE), is a Canadian Space Agency (CSA) multi-mission satellite operated by the University of Calgary. The mission development and operations from launch to February 2018 was funded through CSA and the Technology Partnerships Canada program. In February, 2018 CASSIOPE became part of the European Space Agency's Swarm constellation through the Third Party Mission Program, known as Swarm Echo, or Swarm-E. It was launched September 29, 2013, on the first flight of the SpaceX Falcon 9 v1.1 launch vehicle. CASSIOPE is the first Canadian hybrid satellite to carry a dual mission in the fields of telecommunications and scientific research. The main objectives are to gather information to better understand the science of space weather, while verifying high-speed communications concepts through the use of advanced space technologies.
Merlin is a family of rocket engines developed by SpaceX for use on its Falcon 1, Falcon 9 and Falcon Heavy launch vehicles. Merlin engines use RP-1 and liquid oxygen as rocket propellants in a gas-generator power cycle. The Merlin engine was originally designed for sea recovery and reuse, but since 2016 the entire Falcon 9 booster is recovered for reuse by landing vertically on a landing pad using one of its nine Merlin engines.
Falcon 1 was a small-lift launch vehicle that was operated from 2006 to 2009 by SpaceX, an American aerospace manufacturer. On 28 September 2008, Falcon 1 became the first privately developed fully liquid-fueled launch vehicle to go into orbit around the Earth.
Falcon 9 is a partially reusable medium-lift launch vehicle that can carry cargo and crew into Earth orbit, designed, manufactured and launched by American aerospace company SpaceX. It can also be used as an expendable heavy-lift launch vehicle. The first Falcon 9 launch was on 4 June 2010. The first Falcon 9 commercial resupply mission to the International Space Station (ISS) launched on 8 October 2012. In 2020 it became the first commercial rocket to launch humans to orbit and remains the only such vehicle. It is the only U.S. rocket certified for transporting humans to the ISS. In 2022, it became the U.S. rocket with the most launches in history and with the best safety record, having suffered just one flight failure.
Orbcomm is a family of low Earth orbit communications satellites, operated by the United States satellite communications company Orbcomm. As of July 2014, 51 such satellites have orbited Earth, with 50 still continuing to do so.
Falcon Heavy is a partially reusable super heavy-lift launch vehicle that can carry cargo into Earth orbit, and beyond. It is designed, manufactured and launched by American aerospace company SpaceX.
SpaceX manufactures launch vehicles to operate its launch provider services and to execute its various exploration goals. SpaceX currently manufactures and operates the Falcon 9 Block 5 family of medium-lift launch vehicles and the Falcon Heavy family of heavy-lift launch vehicles – both of which are powered by SpaceX Merlin engines and employ VTVL technologies to reuse the first stage. As of 2024, the company is also developing the fully reusable Starship launch system, which will replace the Falcon 9 and Falcon Heavy.
SpaceX has privately funded the development of orbital launch systems that can be reused many times, similar to the reusability of aircraft. SpaceX has developed technologies over the last decade to facilitate full and rapid reuse of space launch vehicles. The project's long-term objectives include returning a launch vehicle first stage to the launch site within minutes and to return a second stage to the launch pad, following orbital realignment with the launch site and atmospheric reentry in up to 24 hours. SpaceX's long term goal would have been reusability of both stages of their orbital launch vehicle, and the first stage would be designed to allow reuse a few hours after return. Development of reusable second stages for Falcon 9 was later abandoned in favor of developing Starship, however, SpaceX developed reusable payload fairings for the Falcon 9.
THAICOM 6 is a Thai satellite of the Thaicom series, operated by Thaicom Public Company Limited, a subsidiary of INTOUCH headquartered in Bangkok, Thailand. THAICOM 6 is colocated with Thaicom 5 at 78.5 degrees East, in geostationary orbit. The total cost for the satellite is US$160 million.
SpaceX CRS-8, also known as SpX-8, was a Commercial Resupply Service mission to the International Space Station (ISS) which was launched on April 8, 2016, at 20:43 UTC. It was the 23rd flight of a Falcon 9 rocket, the tenth flight of a Dragon cargo spacecraft and the eighth operational mission contracted to SpaceX by NASA under the Commercial Resupply Services program. The capsule carried over 3,100 kilograms (6,800 lb) of cargo to the ISS including the Bigelow Expandable Activity Module (BEAM), a prototype inflatable space habitat delivered in the vehicle's trunk, which was attached to the station and, as of May 2022, is expected to remain so for five more full years of in-orbit viability tests.
Falcon 9 v1.1 was the second version of SpaceX's Falcon 9 orbital launch vehicle. The rocket was developed in 2011–2013, made its maiden launch in September 2013, and its final flight in January 2016. The Falcon 9 rocket was fully designed, manufactured, and operated by SpaceX. Following the second Commercial Resupply Services (CRS) launch, the initial version Falcon 9 v1.0 was retired from use and replaced by the v1.1 version.
The Falcon 9 v1.0 was the first member of the Falcon 9 launch vehicle family, designed and manufactured by SpaceX in Hawthorne, California. Development of the medium-lift launcher began in 2005, and it first flew on June 4, 2010. The Falcon 9 v1.0 then launched four Dragon cargo spacecraft: one on an orbital test flight, then one demonstration and two operational resupply missions to the International Space Station under a Commercial Resupply Services contract with NASA.
The Falcon 9 first-stage landing tests were a series of controlled-descent flight tests conducted by SpaceX between 2013 and 2016. Since 2017, the first stage of Falcon 9 missions has been routinely landed if the rocket performance allowed it, and if SpaceX chose to recover the stage.
SES-9 is a geostationary communications satellite operated by SES S.A. It was launched from Cape Canaveral SLC-40 by a Falcon 9 Full Thrust launch vehicle on 4 March 2016.
Falcon 9 flight 20 was a Falcon 9 space launch that occurred on 22 December 2015 at 01:29:00 UTC. It was the first time that the first stage of an orbital rocket made a successful return and vertical landing.
SES-10, is a geostationary communications satellite awarded in February 2014, owned and operated by SES S.A. and designed and manufactured by Airbus Defence and Space on the Eurostar-3000 satellite bus. It is positioned at the 67° West position thanks to an agreement with the Andean Community to use the Simón Bolivar-2 satellite network. It replaces AMC-3 and AMC-4 to provide enhanced coverage and significant capacity expansion.
Falcon 9 Full Thrust is a partially reusable medium-lift launch vehicle, designed and manufactured by SpaceX. It was first designed in 2014–2015, with its first launch operations in December 2015. As of 23 April 2024, Falcon 9 Full Thrust had performed 306 launches without any failures. Based on the Laplace point estimate of reliability, this rocket is the most reliable orbital launch vehicle in operation.
The launch, for which SES paid well under US$60 million, has suffered multiple delays as Hawthorne, California-based SpaceX works through issues related to bringing the vehicle to operational status. Given the low price paid, SES is reluctant to move the satellite to another rocket despite the months-long delay. The company is still hoping for a launch in November or December. The original contract in 2011 called for an early 2013 launch.