Flight test

Last updated

Flight testing is a branch of aeronautical engineering that develops specialist equipment required for testing behaviour and systems of aircraft or testing the atmospheric phase of launch vehicles and reusable spacecraft. Instrumentation systems are developed using proprietary transducers and data acquisition systems. Data is sampled during the flight of an aircraft, or atmospheric testing of launch vehicles and reusable spacecraft. This data is validated for accuracy and analyzed to further modify the vehicle design during development, or to validate the design of the vehicle.

Contents

The flight test phase accomplishes two major tasks: 1) finding and fixing design problems and then 2) verifying and documenting the vehicle capabilities when the vehicle design is complete, or to provide a final specification for government certification or customer acceptance. The flight test phase can range from the test of a single new system for an existing vehicle to the complete development and certification of a new aircraft, launch vehicle, or reusable spacecraft. Therefore, the duration of a particular flight test program can vary from a few weeks to years.

Aircraft flight test

Civil aircraft

There are typically two categories of flight test programs – commercial and military. Commercial flight testing is conducted to certify that the aircraft meets all applicable safety and performance requirements of the government certifying agency. In the United States, this is the Federal Aviation Administration (FAA); in Canada, Transport Canada (TC); in the United Kingdom (UK), the Civil Aviation Authority; and in the European Union, the European Aviation Safety Agency (EASA). Since commercial aircraft development is normally funded by the aircraft manufacturer and/or private investors, the certifying agency does not have a stake in the commercial success of the aircraft. These civil agencies are concerned with the aircraft's safety and that the pilot's flight manual accurately reports the aircraft's performance. The market will determine the aircraft's suitability to operators. Normally, the civil certification agency does not get involved in flight testing until the manufacturer has found and fixed any development issues and is ready to seek certification.

Military aircraft

Military programs differ from commercial in that the government contracts with the aircraft manufacturer to design and build an aircraft to meet specific mission capabilities. These performance requirements are documented to the manufacturer in the aircraft specification and the details of the flight test program (among many other program requirements) are spelled out in the statement of work. In this case, the government is the customer and has a direct stake in the aircraft's ability to perform the mission. Since the government is funding the program, it is more involved in the aircraft design and testing from early-on. Often military test pilots and engineers are integrated as part of the manufacturer's flight test team, even before first flight. The final phase of the military aircraft flight test is the Operational Test (OT). OT is conducted by a government-only test team with the dictate to certify that the aircraft is suitable and effective to carry out the intended mission.[ citation needed ]

Flight testing of military aircraft is often conducted at military flight test facilities. The US Navy tests aircraft at Naval Air Station Patuxent River and the US Air Force at Edwards Air Force Base. The U.S. Air Force Test Pilot School and the U.S. Naval Test Pilot School are the programs designed to teach military test personnel. In the UK, most military flight testing is conducted by three organizations, the RAF, BAE Systems and QinetiQ. For minor upgrades the testing may be conducted by one of these three organizations in isolation, but major programs are normally conducted by a joint trials team (JTT), with all three organizations working together under the umbrella of an integrated project team (IPT) airspace.[ citation needed ]

Atmospheric flight testing of launch vehicles and reusable spacecraft

Thermal imaging of the controlled-descent flight test of the Falcon 9 first stage from stage separation onward, on Falcon 9 Flight 13, 21 September 2014. Includes footage as the first stage maneuvers out of the second stage plume; coasting near peak altitude of approximately 140 km (87 mi); boost-back burn to limit downrange translation; preparing for the reentry burn; and the reentry burn from approximately 70 km (43 mi) to 40 km (25 mi) altitude. Does not include the landing burn near the ocean surface as clouds obscured the infrared imaging at low altitude.

All launch vehicles, as well as a few reusable spacecraft, must necessarily be designed to deal with aerodynamic flight loads while moving through the atmosphere.

Many launch vehicles are flight tested, with rather more extensive data collection and analysis on the early orbital launches of a particular launch vehicle design. Reusable spacecraft or reusable booster test programs are much more involved and typically follow the full envelope expansion paradigm of traditional aircraft testing. Previous and current test programs include the early drop tests of the Space Shuttle, the X-24B, SpaceShipTwo, Dream Chaser, [1] Falcon 9 prototypes, [2] [3] OK-GLI, and SpaceX Starship prototypes.

Flight test processes

Flight testing—typically as a class of non-revenue producing flight, although SpaceX has also done extensive flight tests on the post-mission phase of a returning booster flight on revenue launches—can be subject to the latter's statistically demonstrated higher risk of accidents or serious incidents. This is mainly due to the unknowns of a new aircraft or launch vehicle's handling characteristics and lack of established operating procedures, and can be exacerbated if test pilot training or experience of the flight crew is lacking [4] For this reason, flight testing is carefully planned in three phases: preparation; execution; and analysis and reporting.

Preparation

Static pressure probe on the nose of a Sukhoi Superjet 100 prototype Sukhoi Superjet 100 prototype.jpg
Static pressure probe on the nose of a Sukhoi Superjet 100 prototype
Pressure measurement equipment and water tanks in Boeing 747-8I prototype Cabin nose section of 747-8I prototype.jpg
Pressure measurement equipment and water tanks in Boeing 747-8I prototype
Static pressure probe rig aboard Boeing 747-8I prototype; a long plastic tube, shown wound round a storage drum, is connected to a probe with static pressure orifices. The probe is trailed about two wing spans behind the aircraft. Boeing 747-8I prototype static pressure probe.jpg
Static pressure probe rig aboard Boeing 747-8I prototype; a long plastic tube, shown wound round a storage drum, is connected to a probe with static pressure orifices. The probe is trailed about two wing spans behind the aircraft.

For both commercial and military aircraft, as well as launch vehicles, flight test preparation begins well before the test vehicle is ready to fly. Initially what needs to be tested must be defined, from which the Flight Test Engineers prepare the test plan, which is essentially certain maneuvers to be flown (or systems to be exercised). Each single test is known as a Test Point. A full certification/qualification flight test program for a new aircraft will require testing for many aircraft systems and in-flight regimes; each is typically documented in a separate test plan. Altogether, a certification flight test program will consist of approximately 10,000 Test Points.[ citation needed ]

The document used to prepare a single test flight for an aircraft is known as a Test Card. This will consist of a description of the Test Points to be flown. The flight test engineer will try to fly similar Test Points from all test plans on the same flights, where practical. This allows the required data to be acquired in the minimum number of flight hours. The software used to control the flight test process is known as Flight Test Management Software, and supports the Flight Test Engineer in planning the test points to be flown as well as generating the required documentation.[ citation needed ]

Once the flight test data requirements are established, the aircraft or launch vehicle is instrumented with a data acquisition system (DAS), or data acquisition unit (DAU) and sensors, to record that data for analysis. Typical instrumentation parameters recorded during a flight test for a large aircraft are:

Specific calibration instruments, whose behavior has been determined from previous tests, may be brought on board to supplement the aircraft's in-built probes.

During the flight, these parameters are then used to compute relevant aircraft performance parameters, such as airspeed, altitude, weight, and center of gravity position.

During selected phases of flight test, especially during early development of a new aircraft, many parameters are transmitted to the ground during the flight and monitored by flight test and test support engineers, or stored for subsequent data analysis. This provides for safety monitoring and allows for both real-time and full-simulation analysis of the data being acquired.

Execution

When the aircraft or launch vehicle is completely assembled and instrumented, many hours of ground testing are conducted. This allows exploring multiple aspects: basic aircraft vehicle operation, flight controls, engine performance, dynamic systems stability evaluation, and provides a first look at structural loads. The vehicle can then proceed with its maiden flight, a major milestone in any aircraft or launch vehicle development program.

There are several aspects to a flight test program, among which:

Testing that is specific to military aircraft includes:

Emergency situations are evaluated as a normal part of all flight test program. Examples are: engine failure during various phases of flight (takeoff, cruise, landing), systems failures, and controls degradation. The overall operations envelope (allowable gross weights, centers-of-gravity, altitude, max/min airspeeds, maneuvers, etc.) is established and verified during flight testing. Aircraft are always demonstrated to be safe beyond the limits allowed for normal operations in the Flight Manual.

Because the primary goal of a flight test program is to gather accurate engineering data, often on a design that is not fully proven, piloting a flight test aircraft requires a high degree of training and skill. As such, such programs are typically flown by a specially trained test pilot, the data is gathered by a flight test engineer, and often visually displayed to the test pilot and/or flight test engineer using flight test instrumentation.

Analysis and reporting

It includes the analysis of a flight for certification. It analyze the internal and outer part of the flight by checking its all minute parts. Reporting includes the analyzed data result.

Introduction Aircraft Performance has various missions such as Takeoff, Climb, Cruise, Acceleration, Deceleration, Descent, Landing and other Basic fighter maneuvers, etc..

After the flight testing, the aircraft has to be certified according to their regulations like FAA's FAR, EASA's Certification Specifications (CS) and India's Air Staff Compliance and Requirements.

1. Flight Performance Evaluation and documentation

2. Reduction of Flight performance to standard conditions

3. Preparation and Validation of Performance Charts for Operating Data Manual (ODM)

Performance charts allow a pilot to predict the takeoff, climb, cruise, and landing performance of an aircraft. These charts, provided by the manufacturer, are included in the AFM/POH. Information the manufacturer provides on these charts has been gathered from test flights conducted in a new aircraft, under normal operating conditions while using average piloting skills, and with the aircraft and engine in good working order. Engineers record the flight data and create performance charts based on the behavior of the aircraft during the test flights. By using these performance charts, a pilot can determine the runway length needed to take off and land, the amount of fuel to be used during flight, and the time required to arrive at the destination. The data from the charts will not be accurate if the aircraft is not in good working order or when operating under adverse conditions. Always consider the necessity to compensate for the performance numbers if the aircraft is not in good working order or piloting skills are below average. Each aircraft performs differently and, therefore, has different performance numbers. Compute the performance of the aircraft prior to every flight, as every flight is different.

Every chart is based on certain conditions and contains notes on how to adapt the information for flight conditions. It is important to read every chart and understand how to use it. Read the instructions provided by the manufacturer. For an explanation on how to use the charts, refer to the example provided by the manufacturer for that specific chart.

The information manufacturers furnish is not standardized. Information may be contained in a table format, and other information may be contained in a graph format. Sometimes combined graphs incorporate two or more graphs into one chart to compensate for multiple conditions of flight. Combined graphs allow the pilot to predict aircraft performance for variations in density altitude, weight, and winds all on one chart. Because of the vast amount of information that can be extracted from this type of chart, it is important to be very accurate in reading the chart. A small error in the beginning can lead to a large error at the end.

The remainder of this section covers performance information for aircraft in general and discusses what information the charts contain and how to extract information from the charts by direct reading and interpolation methods. Every chart contains a wealth of information that should be used when flight planning. Examples of the table, graph, and combined graph formats for all aspects of flight will be discussed.

Interpolation Not all of the information on the charts is easily extracted. Some charts require interpolation to find the information for specific flight conditions. Interpolating information means that by taking the known information, a pilot can compute intermediate information. However, pilots sometimes round off values from charts to a more conservative figure. Using values that reflect slightly more adverse conditions provides a reasonable estimate of performance information and gives a slight margin of safety. The following illustration is an example of interpolating information from a takeoff distance chart:

Flight Test Team

Flight test engineer's workstation aboard an Airbus A380 prototype A380 teststation fb06rs.jpg
Flight test engineer's workstation aboard an Airbus A380 prototype

The make-up of the Flight Test Team will vary with the organization and complexity of the flight test program, however, there are some key players who are generally part of all flight test organizations. The leader of a flight test team is usually a flight test engineer (FTE) or possibly an experimental test pilot. Other FTEs or pilots could also be involved. Other team members would be the Flight Test Instrumentation Engineer, Instrumentation System Technicians, the aircraft maintenance department (mechanics, electrical techs, avionics technicians, etc.), Quality/Product Assurance Inspectors, the ground-based computing/data center personnel, plus logistics and administrative support. Engineers from various other disciplines would support the testing of their particular systems and analyze the data acquired for their specialty area.

Since many aircraft development programs are sponsored by government military services, military or government-employed civilian pilots and engineers are often integrated into the flight test team. The government representatives provide program oversight and review and approve data. Government test pilots may also participate in the actual test flights, possibly even on the first/maiden flight.

See also

Related Research Articles

<span class="mw-page-title-main">Space Shuttle</span> Partially reusable launch system and space plane

The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development.

<span class="mw-page-title-main">Lifting body</span> Aircraft configuration in which the fuselage produces significant lift

A lifting body is a fixed-wing aircraft or spacecraft configuration in which the body itself produces lift. In contrast to a flying wing, which is a wing with minimal or no conventional fuselage, a lifting body can be thought of as a fuselage with little or no conventional wing. Whereas a flying wing seeks to maximize cruise efficiency at subsonic speeds by eliminating non-lifting surfaces, lifting bodies generally minimize the drag and structure of a wing for subsonic, supersonic and hypersonic flight, or spacecraft re-entry. All of these flight regimes pose challenges for proper flight safety.

Human spaceflight programs have been conducted, started, or planned by multiple countries and companies. Until the 21st century, human spaceflight programs were sponsored exclusively by governments, through either the military or civilian space agencies. With the launch of the privately funded SpaceShipOne in 2004, a new category of human spaceflight programs – commercial human spaceflight – arrived. By the end of 2022, three countries and one private company (SpaceX) had successfully launched humans to Earth orbit, and two private companies had launched humans on a suborbital trajectory.

<span class="mw-page-title-main">SpaceShipOne</span> American experimental spaceplane

SpaceShipOne is an experimental air-launched rocket-powered aircraft with sub-orbital spaceflight capability at speeds of up to 3,000 ft/s (2,000 mph) / 910 m/s (3,300 km/h) using a hybrid rocket motor. The design features a unique "feathering" atmospheric reentry system where the rear half of the wing and the twin tail booms folds 70 degrees upward along a hinge running the length of the wing; this increases drag while retaining stability. SpaceShipOne completed the first crewed private spaceflight in 2004. That same year, it won the US$10 million Ansari X Prize and was immediately retired from active service. Its mother ship was named "White Knight". Both craft were developed and flown by Mojave Aerospace Ventures, which was a joint venture between Paul Allen and Scaled Composites, Burt Rutan's aviation company. Allen provided the funding of approximately US$25 million.

<span class="mw-page-title-main">Spaceplane</span> Spacecraft capable of aerodynamic flight in atmosphere

A spaceplane is a vehicle that can fly and glide like an aircraft in Earth's atmosphere and maneuver like a spacecraft in outer space. To do so, spaceplanes must incorporate features of both aircraft and spacecraft. Orbital spaceplanes tend to be more similar to conventional spacecraft, while sub-orbital spaceplanes tend to be more similar to fixed-wing aircraft. All spaceplanes to date have been rocket-powered for takeoff and climb, but have then landed as unpowered gliders.

<span class="mw-page-title-main">Lockheed Martin X-33</span> Uncrewed re-usable spaceplane technology demonstrator for the VentureStar

The Lockheed Martin X-33 was a proposed uncrewed, sub-scale technology demonstrator suborbital spaceplane that was developed for a period in the 1990s. The X-33 was a technology demonstrator for the VentureStar orbital spaceplane, which was planned to be a next-generation, commercially operated reusable launch vehicle. The X-33 would flight-test a range of technologies that NASA believed it needed for single-stage-to-orbit reusable launch vehicles, such as metallic thermal protection systems, composite cryogenic fuel tanks for liquid hydrogen, the aerospike engine, autonomous (uncrewed) flight control, rapid flight turn-around times through streamlined operations, and its lifting body aerodynamics.

<span class="mw-page-title-main">McDonnell Douglas DC-X</span> Prototype single-stage-to-orbit rocket developed & flown between 1991-1996

The DC-X, short for Delta Clipper or Delta Clipper Experimental, was an uncrewed prototype of a reusable single-stage-to-orbit launch vehicle built by McDonnell Douglas in conjunction with the United States Department of Defense's Strategic Defense Initiative Organization (SDIO) from 1991 to 1993. Starting 1994 until 1995, testing continued through funding of the US civil space agency NASA. In 1996, the DC-X technology was completely transferred to NASA, which upgraded the design for improved performance to create the DC-XA. After a test flight of DC-XA in 1996 resulted in a fire, the project was canceled. Despite its cancellation, the program inspired later reusable launch systems. Michael D. Griffin has since praised the program as "government R&D at its finest."

<span class="mw-page-title-main">Scaled Composites Tier One</span> Suborbital human spaceflight program using the reusable spacecraft SpaceShipOne

Tier One was a Scaled Composites' 1990s–2004 program of suborbital human spaceflight using the reusable spacecraft SpaceShipOne and its launcher White Knight. The craft was designed by Burt Rutan, and the project was funded 20 million US Dollars by Paul Allen. In 2004 it made the first privately funded human spaceflight and won the 10 million US Dollars Ansari X Prize for the first non-governmental reusable crewed spacecraft.

<span class="mw-page-title-main">Wallops Flight Facility</span> American spaceport in Virginia

Wallops Flight Facility (WFF) is a rocket launch site on Wallops Island on the Eastern Shore of Virginia, United States, just east of the Delmarva Peninsula and approximately 100 miles (160 km) north-northeast of Norfolk. The facility is operated by the Goddard Space Flight Center in Greenbelt, Maryland, and primarily serves to support science and exploration missions for NASA and other Federal agencies. WFF includes an extensively instrumented range to support launches of more than a dozen types of sounding rockets; small expendable suborbital and orbital rockets; high-altitude balloon flights carrying scientific instruments for atmospheric and astronomical research; and, using its Research Airport, flight tests of aeronautical research aircraft, including unmanned aerial vehicles.

<span class="mw-page-title-main">Little Joe (rocket)</span> NASA Project Mercury capsule qualification test booster rocket

Little Joe was a solid-fueled booster rocket used by NASA for eight launches from 1959 to 1960 from Wallops Island, Virginia to test the launch escape system and heat shield for Project Mercury capsules, as well as the name given to the test program using the booster. The first rocket designed solely for crewed spacecraft qualifications, Little Joe was also one of the pioneer operational launch vehicles using the rocket cluster principle.

<span class="mw-page-title-main">North American X-10</span> Experimental missile to test design features of the SM-64 Navaho missile

The North American X-10 was an unmanned technology demonstrator developed by North American Aviation. It was a subscale reusable design that included many of the design features of the SM-64 Navaho missile. The X-10 was similar to the development of the Bell X-9 Shrike project, which was based on features of the GAM-63 RASCAL.

<span class="mw-page-title-main">Mid-air retrieval</span>

Mid-air retrieval is a technique used in atmospheric reentry when the reentering vehicle is incapable of a satisfactory unassisted landing. The vehicle is slowed by means of parachutes, and then a specially-equipped aircraft matches the vehicle's trajectory and catches it in mid-air.

<span class="mw-page-title-main">Boeing X-37</span> Reusable robotic spaceplane

The Boeing X-37, also known as the Orbital Test Vehicle (OTV), is a reusable robotic spacecraft. It is boosted into space by a launch vehicle, then re-enters Earth's atmosphere and lands as a spaceplane. The X-37 is operated by the Department of the Air Force Rapid Capabilities Office, in collaboration with United States Space Force, for orbital spaceflight missions intended to demonstrate reusable space technologies. It is a 120-percent-scaled derivative of the earlier Boeing X-40. The X-37 began as a NASA project in 1999, before being transferred to the United States Department of Defense in 2004. Until 2019, the program was managed by Air Force Space Command.

<span class="mw-page-title-main">Atmospheric Reentry Demonstrator</span>

The Advanced Reentry Demonstrator (ARD) was a European Space Agency (ESA) suborbital reentry vehicle. It was developed and operated for experimental purposes, specifically to validate the multiple reentry technologies integrated upon it and the vehicle's overall design, as well as to gain greater insight into the various phenomenon encountered during reentry.

A flight test engineer (FTE) is an engineer involved in the flight testing of prototype aircraft or aircraft systems.

<span class="mw-page-title-main">Approach and Landing Tests</span> Trials of the prototype Space Shuttle Enterprise

The Approach and Landing Tests were a series of sixteen taxi and flight trials of the prototype Space Shuttle Enterprise that took place between February and October 1977 to test the vehicle's flight characteristics. Of the sixteen taxi-tests and flights, eleven saw Enterprise remain mated to the Shuttle Carrier Aircraft (SCA), while the final five had the shuttle jettisoned from the SCA, with the on-board crew flying and landing the spacecraft.

<span class="mw-page-title-main">452nd Flight Test Squadron</span> US Air Force unit

The 452d Flight Test Squadron is a United States Air Force squadron. It is assigned to the 412th Operations Group, Air Force Materiel Command, stationed at Edwards Air Force Base, California.

<span class="mw-page-title-main">Orel (spacecraft)</span> Planned reusable crewed spacecraft

Orel or Oryol, formerly Federation, and PPTS, is a project by Roscosmos to develop a new-generation, partially reusable crewed spacecraft.

Aircraft can have different ways to take off and land. Conventional airplanes accelerate along the ground until sufficient lift is generated for takeoff, and reverse the process to land. Some airplanes can take off at low speed, this being a short takeoff. Some aircraft such as helicopters and Harrier jump jets can take off and land vertically. Rockets also usually take off vertically, but some designs can land horizontally.

The DARPA XS-1 was an experimental spaceplane/booster with the planned capability to deliver small satellites into orbit for the U.S. Military. It was reported to be designed to be reusable as frequently as once a day, with a stated goal of doing so for 10 days straight. The XS-1 was intended to directly replace the first stage of a multistage rocket by taking off vertically and flying to hypersonic speed and high suborbital altitude, enabling one or more expendable upper stages to separate and deploy a payload into low Earth orbit. The XS-1 would then return to Earth, where it could ostensibly be serviced fast enough to repeat the process at least once every 24 hours.

References

  1. "Sierra Nevada's Dream Chaser spacecraft tested at Broomfield airport". dailycamera.com. 29 May 2012. Archived from the original on 31 May 2012. Retrieved 29 May 2012.
  2. Lindsey, Clark (28 March 2013). "SpaceX moving quickly towards fly-back first stage". NewSpace Watch. Archived from the original on 16 April 2013. Retrieved 29 March 2013.
  3. "Reusable rocket prototype almost ready for first liftoff". Spaceflight Now. 9 July 2012. Archived from the original on 15 July 2012. Retrieved 13 July 2012.
  4. "Mitigating Risk for Non Standard Flights". Archived from the original on 20 May 2009. Retrieved 31 January 2011.
  5. AGARD-AG-160-VOL-2, AGARD flight test instrumentation series. Volume 2: In-flight temperature measurements, p.30

Further reading