SpaceX CRS-6

Last updated

SpaceX CRS-6
CRS-6 Dragon from ISS (ISS043-E-122200).jpg
The SpaceX CRS-6 Dragon spacecraft as seen from the ISS on 17 April 2015
NamesSpX-6
Mission type ISS resupply
Operator SpaceX / NASA
COSPAR ID 2015-021A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 40588
Website https://www.spacex.com/
Mission duration30 days (planned)
36 days, 20 hours, 31 minutes (achieved)
Spacecraft properties
Spacecraft Dragon C108
Spacecraft type Dragon CRS
Manufacturer SpaceX
Launch mass6,000 kg (13,000 lb)
Dimensions8.1 m (27 ft) (height)
4 m (13 ft) (diameter)
Start of mission
Launch date14 April 2015, 20:10:41 UTC
Rocket Falcon 9 v1.1
Launch site Cape Canaveral, SLC-40
Contractor SpaceX
End of mission
DisposalRecovered
Landing date21 May 2015, 16:42 UTC
Landing site Pacific Ocean
Orbital parameters
Reference system Geocentric orbit [1]
Regime Low Earth orbit
Inclination 51.65°
Berthing at ISS
Berthing port Harmony nadir
RMS capture17 April 2015, 10:55 UTC
Berthing date17 April 2015, 13:29 UTC
Unberthing date21 May 2015, 09:29 UTC
RMS release21 May 2015, 11:04 UTC
Time berthed33 days, 20 hours
Cargo
Mass2,015 kg (4,442 lb) [2]
Pressurised2,015 kg (4,442 lb)
SpaceX CRS-6 Patch.png
NASA SpX-6 mission patch  

SpaceX CRS-6, also known as SpX-6, was a Commercial Resupply Service mission to the International Space Station, contracted to NASA. It was the eighth flight for SpaceX's uncrewed Dragon cargo spacecraft and the sixth SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract. It was docked to the International Space Station from 17 April to 21 May 2015.

Contents

Launch history

In July 2014, the launch was scheduled by NASA for February 2015, with berthing to the station occurring two days later. However, as a result of delays in the launch of the previous SpaceX CRS-5 mission, SpaceX CRS-6 launched on 14 April 2015. In late March, 2015, the launch was scheduled for 13 April 2015, [3] but was later postponed to 14 April 2015 due to weather conditions. [4]

Falcon 9 and Dragon undergoing preparations in Florida in advance of launch to the International Space Station. CRS-6 launch prep 2015.jpg
Falcon 9 and Dragon undergoing preparations in Florida in advance of launch to the International Space Station.

A Federal Communications Commission (FCC) application submitted for temporary communication frequency authority notes the launch planning date as no earlier than 8 April 2015. The application also confirms communication uplinks for use with the first stage of this mission as it conducts another attempt at a first-ever propulsive landing on the Autonomous spaceport drone ship after staging. [5]

Launch of the Falcon 9 v1.1 launch vehicle carrying the CRS-6 Dragon spacecraft on 14 April 2015 Launch of Falcon 9 carrying CRS-6 Dragon (17170624642).jpg
Launch of the Falcon 9 v1.1 launch vehicle carrying the CRS-6 Dragon spacecraft on 14 April 2015

Payload

Primary payload

NASA has contracted for the CRS-6 mission from SpaceX and therefore determines the primary payload, date/time of launch, and orbital parameters for the Dragon space capsule. The Dragon spacecraft was filled with 2,015 kg (4,442 lb) of supplies and payloads, including critical materials to directly support about 40 of the more than 250 science and research investigations that will occur during Expedition 43 and Expedition 44. [2]

Among other items on board:

Secondary payload

SpaceX has the primary control over manifesting, scheduling and loading secondary payloads. However, there are certain restrictions included in their contract with NASA that preclude specified hazards on the secondary payloads, and also require contract-specified probabilities of success and safety margins for any SpaceX reboosts of the secondary satellites once the Falcon 9 second stage has achieved its initial low Earth orbit (LEO).

SpaceX CRS-6 included science payloads for studying new ways to possibly counteract the microgravity-induced cell damage seen during spaceflight, the effects of microgravity on the most common cells in bones, gather new insight that could lead to treatments for osteoporosis and muscle wasting conditions, continue studies into astronaut vision changes and test a new material that could one day be used as a synthetic muscle for robotics explorers of the future. Also making the trip was a new espresso machine for space station crews. [2]

A part of this payload includes science experiments from high schools, such as a project from Ambassador High School in Torrance, California. [10]

Return payload

Dragon returned 1,370 kg (3,020 lb) of cargo to Earth. [2]

Post-launch flight test

Falcon 9 first stage approaches the drone ship. The stage makes a hard landing followed by a tip-over. CRS-6 first stage.png
Falcon 9 first stage approaches the drone ship. The stage makes a hard landing followed by a tip-over.
Falcon 9 first stage attempts landing on ASDS after second stage with SpaceX CRS-6 continued onto orbit. Landing legs are in the midst of deploying. Falcon 9 first stage attempts landing on ASDS after CRS-6 (17170624412).jpg
Falcon 9 first stage attempts landing on ASDS after second stage with SpaceX CRS-6 continued onto orbit. Landing legs are in the midst of deploying.

After the separation of the second stage, SpaceX conducted a flight test and attempted to return the nearly-empty first stage of the Falcon 9 through the atmosphere and land it on a 90 m × 50 m (300 ft × 160 ft) floating platform called the autonomous spaceport drone ship . The unmanned launch vehicle technically landed on the floating platform, however it came down with too much lateral velocity, tipped over, and was destroyed. [11] Elon Musk later explained that the bipropellant valve was stuck, and therefore the control system could not react rapidly enough for a successful landing. [12]

This was SpaceX's second attempt to land the booster on a floating platform after an earlier test landing attempt in January 2015 had to be abandoned due to weather conditions. The booster was fitted with a variety of technologies to facilitate the flight test, including grid fins and landing legs to facilitate the post-mission test. If successful, this would have been the first time in history that a launch vehicle booster was returned to a vertical landing. [9] [13]

On 15 April 2015, SpaceX released a video of the terminal phase of the descent, the landing, the tip over, and a small deflagration as the stage broke up on the deck of the ASDS. [14]

Capsule reflight

The Dragon capsule used for this mission was successfully flown a second time in December 2017 with SpaceX CRS-13. The capsule made its third and final flight as part of the SpaceX CRS-18 mission on 25 July 2019.

See also

Related Research Articles

<span class="mw-page-title-main">Commercial Resupply Services</span> Series of contracts awarded by NASA from 2008-present for delivery of cargo and supplies to the ISS

Commercial Resupply Services (CRS) are a series of flights awarded by NASA for the delivery of cargo and supplies to the International Space Station (ISS) on commercially operated spacecraft. The first CRS contracts were signed in 2008 and awarded $1.6 billion to SpaceX for twelve cargo Dragon and $1.9 billion to Orbital Sciences for eight Cygnus flights, covering deliveries to 2016. The Falcon 9 and Antares rockets were also developed under the CRS program to deliver cargo spacecraft to the ISS.

<span class="mw-page-title-main">SpaceX CRS-3</span> 2014 American resupply spaceflight to the ISS

SpaceX CRS-3, also known as SpX-3, was a Commercial Resupply Service mission to the International Space Station (ISS), contracted to NASA, which was launched on 18 April 2014. It was the fifth flight for SpaceX's uncrewed Dragon cargo spacecraft and the third SpaceX operational mission contracted to NASA under a Commercial Resupply Services (CRS-1) contract.

<span class="mw-page-title-main">SpaceX CRS-8</span> 2016 American resupply spaceflight to the ISS

SpaceX CRS-8, also known as SpX-8, was a Commercial Resupply Service mission to the International Space Station (ISS) which was launched on April 8, 2016, at 20:43 UTC. It was the 23rd flight of a Falcon 9 rocket, the tenth flight of a Dragon cargo spacecraft and the eighth operational mission contracted to SpaceX by NASA under the Commercial Resupply Services program. The capsule carried over 3,100 kilograms (6,800 lb) of cargo to the ISS including the Bigelow Expandable Activity Module (BEAM), a prototype inflatable space habitat delivered in the vehicle's trunk, which was attached to the station and, as of May 2022, is expected to remain so for five more full years of in-orbit viability tests.

<span class="mw-page-title-main">SpaceX CRS-4</span> 2014 American resupply spaceflight to the ISS

SpaceX CRS-4, also known as SpX-4, was a Commercial Resupply Service mission to the International Space Station (ISS), contracted to NASA, which was launched on 21 September 2014 and arrived at the space station on 23 September 2014. It was the sixth flight for SpaceX's uncrewed Dragon cargo spacecraft, and the fourth SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract. The mission brought equipment and supplies to the space station, including the first 3D printer to be tested in space, a device to measure wind speed on Earth, and small satellites to be launched from the station. It also brought 20 mice for long-term research aboard the ISS.

<span class="mw-page-title-main">Nanoracks</span> Private space hardware and services company

Nanoracks LLC is a private in-space services companywhich builds space hardware and in-space repurposing tools.The company also facilitates experiments and launches of CubeSats to Low Earth Orbit.

<span class="mw-page-title-main">SpaceX CRS-5</span> 2015 American resupply spaceflight to the ISS

SpaceX CRS-5, also known as SpX-5, was a Commercial Resupply Service mission to the International Space Station (ISS), conducted by SpaceX for NASA, and was launched on 10 January 2015 and ended on 11 February 2015. It was the seventh flight for SpaceX's uncrewed Dragon cargo spacecraft and the fifth SpaceX operational mission contracted to NASA under an ISS resupply services contract.

<span class="mw-page-title-main">SpaceX CRS-7</span> Failed 2015 American resupply spaceflight to the ISS

SpaceX CRS-7, also known as SpX-7, was a private American Commercial Resupply Service mission to the International Space Station, contracted to NASA, which launched and failed on June 28, 2015. It disintegrated 139 seconds into the flight after launch from Cape Canaveral, just before the first stage was to separate from the second stage. It was the ninth flight for SpaceX's uncrewed Dragon cargo spacecraft and the seventh SpaceX operational mission contracted to NASA under a Commercial Resupply Services contract. The vehicle launched on a Falcon 9 v1.1 launch vehicle. It was the nineteenth overall flight for the Falcon 9 and the fourteenth flight for the substantially upgraded Falcon 9 v1.1.

<span class="mw-page-title-main">SpaceX CRS-10</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-10, also known as SpX-10, was a Dragon Commercial Resupply Service mission to the International Space Station (ISS) which launched on 19 February 2017. The mission was contracted by NASA as part of its Commercial Resupply Services program and was launched by SpaceX aboard the 30th flight of the Falcon 9 rocket. The mission ended on 19 March 2017 when the Dragon spacecraft left the ISS and safely returned to Earth.

<span class="mw-page-title-main">SpaceX CRS-13</span> 2017 American resupply spaceflight to the ISS

SpaceX CRS-13, also known as SpX-13, was a Commercial Resupply Service mission to the International Space Station launched on 15 December 2017. The mission was contracted by NASA and is flown by SpaceX. It was the second mission to successfully reuse a Dragon capsule, previously flown on CRS-6. The first stage of the Falcon 9 Full Thrust rocket was the previously flown, "flight-proven" core from CRS-11. The first stage returned to land at Cape Canaveral's Landing Zone 1 after separation of the first and second stage.

<span class="mw-page-title-main">SpaceX CRS-14</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-14, also known as SpX-14, was a Commercial Resupply Service mission to the International Space Station launched on 2 April 2018. The mission was contracted by NASA and was flown by SpaceX. This mission reused the Falcon 9 first stage booster previously flown on CRS-12 and the Dragon capsule flown on CRS-8.

<span class="mw-page-title-main">SpaceX CRS-16</span> 2018 American resupply spaceflight to the ISS

SpaceX CRS-16, also known as SpX-16, was a Commercial Resupply Service mission to the International Space Station launched on 5 December 2018 aboard a Falcon 9 launch vehicle. The mission was contracted by NASA and is flown by SpaceX.

<span class="mw-page-title-main">SpaceX CRS-19</span> 2019 American resupply spaceflight to the ISS

SpaceX CRS-19, also known as SpX-19, was a Commercial Resupply Service mission to the International Space Station. The mission is contracted by NASA and was flown by SpaceX on a Falcon 9 rocket.

<span class="mw-page-title-main">SpaceX Dragon 1</span> Partially reusable cargo space capsule

Dragon, also known as Dragon 1 or Cargo Dragon, was a class of fourteen partially reusable cargo spacecraft developed by SpaceX, an American private space transportation company. The spacecraft flew 23 missions between 2010 and 2020. Dragon was launched into orbit by the company's Falcon 9 launch vehicle to resupply the International Space Station (ISS).

<span class="mw-page-title-main">SpaceX CRS-21</span> 2020 American resupply spaceflight to the ISS

SpaceX CRS-21, also known as SpX-21, was a Commercial Resupply Service mission to the International Space Station which launched on 6 December 2020. The mission was contracted by NASA and was flown by SpaceX using a Cargo Dragon 2. This was the first flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016. This was also the first Cargo Dragon of the new Dragon 2 variant, as well as the first Cargo Dragon flight that was docked at the same time as a Crew Dragon spacecraft. This mission used Booster B1058.4, becoming the first NASA mission to reuse a booster previously used on a non-NASA mission. This was also first time SpaceX launched a NASA payload on a booster with more than one previous flight.

<span class="mw-page-title-main">SpaceX CRS-24</span> 2021 American resupply spaceflight to the ISS

SpaceX CRS-24, also known as SpX-24, was a Commercial Resupply Service mission to the International Space Station launched on 21 December 2021, at 10:07:08 UTC. The mission is contracted by NASA and is flown by SpaceX using a Cargo Dragon. This is the fourth flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016.

<span class="mw-page-title-main">SpaceX CRS-25</span> 2022 American resupply spaceflight to the ISS

SpaceX CRS-25, also known as SpX-25, was a Commercial Resupply Service mission (CRS) to the International Space Station (ISS) that was launched on 15 July 2022. The mission was contracted by NASA and was flown by SpaceX using their reusable spacecraft, the Cargo Dragon. The vehicle delivered supplies to the crew aboard the ISS along with multiple pieces of equipment that will be used to conduct multiple research investigations aboard the ISS.

<span class="mw-page-title-main">SpaceX CRS-26</span> 2022 American resupply spaceflight to the ISS

SpaceX CRS-26, also known as SpX-26, is a Commercial Resupply Service mission to the International Space Station (ISS) launched on 26 November 2022. The mission is contracted by NASA and is flown by SpaceX using a Cargo Dragon. This is the sixth flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016.

References

  1. "DRAGON CRS-6". N2YO.com. Retrieved 31 May 2021.
  2. 1 2 3 4 "SpaceX CRS-6 Sixth Commercial Resupply Services Flight to the International Space Station" (PDF). NASA. April 2015. Retrieved 31 May 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. "Launch Schedule" . Retrieved 4 April 2015.
  4. Lawler, Richard. "SpaceX's next try at landing a reusable rocket is minutes away". Engadget. Retrieved 13 April 2015.
  5. "OET Special Temporary Authority Report" . Retrieved 4 April 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  6. "ARKYD: A Space Telescope for Everyone". KickStarter. 26 May 2016. Retrieved 31 May 2021.
  7. Wilhelm, Steve (16 October 2014). "First step toward asteroid mining: Planetary Resources set to launch test satellite". Puget Sound Business Journal. Retrieved 19 October 2014.
  8. "Antares 130 debut with fourth Cygnus ready for second attempt". NASASpaceFlight.com. 27 October 2014. Retrieved 31 May 2021.
  9. 1 2 Graham, William (13 April 2015). "SpaceX Falcon 9 scrubs CRS-6 Dragon launch due to weather". NASASpaceFlight.com. Retrieved 14 April 2015.
  10. "Nanoracks-Ambassador High School-Pollen Propulsion in a Microgravity Environment (Nanoracks-AHS-Pollen Propulsion)". NASA. 3 April 2015. Retrieved 6 April 2015.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  11. "CRS-6 First Stage Landing". YouTube. Retrieved 16 April 2015.
  12. "Elon Musk on Twitter". Twitter. Archived from the original on 15 April 2015. Retrieved 14 April 2015.
  13. Bergin, Chris (3 April 2015). "SpaceX preparing for a busy season of missions and test milestones". NASASpaceFlight.com. Retrieved 4 April 2015.
  14. CRS-6 First Stage Landing SpaceX, 15 April 2015