Manufacturer | SpaceX |
---|---|
Country of origin | United States |
Operator | SpaceX |
Applications | Satellite Internet access |
Website | starlink |
Project cost | $10 billion |
Specifications | |
Spacecraft type | Small satellite |
Launch mass | |
Equipment |
|
Regime | LEO, SSO [3] |
Production | |
Status | Active |
Launched | |
Operational | 5,501 (as of 12 July 2024 [update] ) |
Maiden launch | 22 February 2018 |
|
Starlink is a satellite internet constellation operated by SpaceX [5] [6] providing satellite Internet access to most of the Earth. [7] [8]
Starshield is a classified derivative of Starlink designed to be operated for and can host payloads for military or government purposes.
The deployment of the first 1,440 satellites will be into 72 orbital planes of 20 satellites each, [9] with a requested lower minimum elevation angle of beams to improve reception: 25° rather than the 40° of the other two orbital shells. [10] : 17 SpaceX launched the first 60 satellites of the constellation in May 2019 into a 450 km (280 mi) orbit and expected up to six launches in 2019 at that time, with 720 satellites (12 × 60) for continuous coverage in 2020. [11]
In August 2019, SpaceX expected four more launches in 2019 [12] and at least nine launches in 2020, [13] but since January 2020 expectations had increased to 24 total launches in 2020. [14]
In March 2020, SpaceX reported producing six satellites per day. [15]
SpaceX also plans to launch Starlink satellites on Starship, a rocket with a much larger payload capacity that is under development. [16]
In February 2021, Musk stated that the satellites are traveling on 25 orbital planes clustered between 53° north and south of the equator. [17]
No. | Mission | Sat. ver. | COSPAR ID | Launch date, time (UTC) | Launch site | Orbit | Satellites | Outcome | Remarks | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Altitude | Inclination | Deployed [4] | w/DtC | Working [4] | ||||||||
– | Tintin [18] | v0.1 | 2018-020 | 22 February 2018, 14:17 [19] [20] | Vandenberg, SLC-4E | 514 km (319 mi) | 97.5° [21] | 2 | 0 | Success | Two test satellites known as Tintin A and B [22] (MicroSat-2a and 2b) that were deployed as co-payloads to the Paz satellite. As of 1 September 2020 [update] , the orbits have decayed and both satellites have reentered the atmosphere. [21] [23] [24] | |
1 | v0.9 [25] | v0.9 | 2019-029 | 24 May 2019, 02:30 [26] | Cape Canaveral, SLC-40 | 440–550 km (270–340 mi) [27] | 53.0° | 60 | 0 | Success [28] | First launch of 60 Starlink test satellites. [29] Said to be "production design", these are used to test various aspects of the network, including deorbiting. [30] They do not yet have the planned satellite interlink capabilities and they only communicate with antennas on Earth. A day after launch an amateur astronomer in the Netherlands was one of the first to publish a video showing the satellites flying across the sky as a "train" of bright lights. [31] By five weeks post launch, 57 of the 60 satellites had been "healthy" while 3 were non-operational and derelict, but deorbited due to atmospheric drag. [32] All working satellites were intentionally deorbited by May 2021, and all remaining failed spacecraft re-entered by October 2022. [4] | |
2 | Launch 1 [33] | v1 | 2019-074 | 11 November 2019, 14:56 [34] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 43 | Success | First launch of Starlink "operational" satellites (v1.0), [34] with an increased mass of 260 kg each and included Ka-band antennas. [35] Satellites were released in a circular orbit at around 290 km altitude, from which the satellites raised their altitude by themselves. | |
3 | Launch 2 | v1 | 2020-001 | 7 January 2020, 02:19:21 [36] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 40 | Success | One of the satellites, dubbed DarkSat, [37] has an experimental coating to make it less reflective, and to reduce the impact on ground-based astronomical observations. [38] | |
4 | Launch 3 | v1 | 2020-006 | 29 January 2020, 14:06 [39] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 48 | Success | ||
5 | Launch 4 | v1 | 2020-012 | 17 February 2020, 15:05 [40] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 46 | Success | First time the satellites were released in an elliptical orbit (212 × 386 km). | |
6 | Launch 5 | v1 | 2020-019 | 18 March 2020, 12:16:39 [36] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 54 | Success | ||
7 | Launch 6 | v1 | 2020-025 | 22 April 2020, 19:30:30 [41] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 49 | Success | ||
8 | Launch 7 | v1 | 2020-035 | 4 June 2020, 01:25:00 [42] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 53 | Success | One of the satellites, dubbed VisorSat, has a sunshade to reduce the impact on ground-based astronomical observations. [43] | |
9 | Launch 8 | v1 | 2020-038 | 13 June 2020, 09:21:18 [44] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 58 | 50 | Success | First Starlink rideshare launch, carrying only 58 of SpaceX's satellites plus three Planet Labs, SkySats 16-18 Earth-observation satellites. [44] | |
10 | Launch 9 | v1 | 2020-055 | 7 August 2020, 05:12:05 [36] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 57 | 54 | Success | BlackSky Global 7 and 8, the 5th and 6th BlackSky Global satellites, launched as rideshare payloads. [45] All of the Starlink satellites are outfitted with the sunshade visor that was tested on a single satellite on 4 June 2020 launch. [46] | |
11 | Launch 10 | v1 | 2020-057 | 18 August 2020, 14:31:16 [36] [47] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 58 | 53 | Success | Rideshare satellites from Planet Labs, SkySats 19-21 Earth-observation satellites. | |
12 | Launch 11 | v1 | 2020-062 | 3 September 2020, 12:46:14 [9] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 50 | Success | ||
13 | Launch 12 | v1 | 2020-070 | 6 October 2020, 11:29:34 [48] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 50 | Success | ||
14 | Launch 13 | v1 | 2020-073 | 18 October 2020, 12:25:57 [36] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 45 | Success | ||
15 | Launch 14 | v1 | 2020-074 | 24 October 2020, 15:31:34 [49] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 43 | Success | ||
16 | Launch 15 | v1 | 2020-088 | 25 November 2020, 02:13:12 [50] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 40 | Success | ||
17 | Launch 16 | v1 | 2021-005 | 20 January 2021, 13:02:00 [36] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 57 | Success | ||
– | Tr-1 | v1 | 2021-006 | 24 January 2021, 15:00:00 [51] | Cape Canaveral, SLC-40 | 560 km (350 mi) | 97.5° [51] | 10 | 0 | Success | Part of Transporter-1 mission. [52] First launch of production Starlink satellites to polar orbits. | |
18 | Launch 18 | v1 | 2021-009 | 4 February 2021, 06:19:00 [53] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 56 | Success | ||
19 | Launch 19 | v1 | 2021-012 | 16 February 2021, 03:59:37 [54] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 57 | Success | ||
20 | Launch 17 | v1 | 2021-017 | 4 March 2021, 08:24:54 [55] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 54 | Success | Second stage failed to deorbit actively, reentered March 26 over Oregon and Washington in the United States. [56] | |
21 | Launch 20 | v1 | 2021-018 | 11 March 2021, 08:13:29 [57] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 59 | Success | ||
22 | Launch 21 | v1 | 2021-021 | 14 March 2021, 10:01:26 [58] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 54 | Success | ||
23 | Launch 22 | v1 | 2021-024 | 24 March 2021, 08:28:24 [59] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 43 | Success | ||
24 | Launch 23 | v1 | 2021-027 | 7 April 2021, 16:34:18 [36] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 60 | Success | ||
25 | Launch 24 | v1 | 2021-036 | 29 April 2021, 03:44:00 [36] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 60 | Success | ||
26 | Launch 25 | v1 | 2021-038 | 4 May 2021, 19:01 [36] | Kennedy, LC-39A | 550 km (340 mi) | 53.0° | 60 | 60 | Success | ||
27 | Launch 27 | v1 | 2021-040 | 9 May 2021, 06:42 [60] | Cape Canaveral, SLC-40 | 550 km (340 mi) | 53.0° | 60 | 58 | Success | ||
28 | Launch 26 | v1 | 2021-041 | 15 May 2021, 22:56 [61] | Kennedy, LC-39A | 569–582 km (354–362 mi) | 53.0° | 52 | 49 | Success | Rideshare satellites: a radar Earth imaging satellite for Capella Space, and an Earth observation satellite, Tyvak 0130, for Tyvak Nano-Satellite Systems. | |
29 | Launch 28 | v1 | 2021-044 | 26 May 2021, 18:59 [62] | Cape Canaveral, SLC-40 | 550 km (340 mi) [63] | 53.0° | 60 | 60 | Success | Last v1.0 and Group 1 Starlink Launch. | |
– | Tr-2 | v1.5 [64] | 2021-059 | 30 June 2021, 19:31 [65] | Cape Canaveral, SLC-40 | 560 km (350 mi) | 97.5° | 3 | 3 | Success | Part of Transporter-2 mission. [66] Second launch of production Starlink and first launch of 3 prototype Starlink v1.5 satellites to polar orbits. | |
30 | Group 2-1 | v1.5 | 2021-082 | 14 September 2021, 03:55:50 [67] | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 51 | 51 | Success | First launch of operational Starlink satellites from Vandenberg Space Force Base, and first launch into a high-inclination, non-SSO orbit. Musk stated that the operational satellites were version 1.5 and featured "laser inter-satellite links, which are needed for high latitudes and mid-ocean coverage". [68] | |
31 | Group 4-1 | v1.5 | 2021-104 | 13 November 2021, 11:19:30 [69] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 52 | Success | First launch of Group 4 Starlink satellites. | |
32 | Group 4-3 | v1.5 | 2021-115 | 2 December 2021, 23:12:15 [70] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 48 | 48 | Success | Rideshare satellites: BlackSky-16 Gen-2 and BlackSky-17 Gen-2. | |
33 | Group 4-4 | v1.5 | 2021-125 | 18 December 2021, 12:41:40 [71] | Vandenberg, SLC-4E | 540 km (340 mi) | 53.2° | 52 | 49 | Success | ||
34 | Group 4-5 | v1.5 | 2022-001 | 6 January 2022, 21:49:10 [72] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 49 | 49 | Success | ||
35 | Group 4-6 | v1.5 | 2022-005 | 19 January 2022, 02:02:40 [73] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 49 | 49 | Success | ||
36 | Group 4-7 | v1.5 | 2022-010 | 3 February 2022, 18:13:20 [74] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 49 | 10 | Success | On 4 February 2022, the satellites deployed on this mission were significantly impacted by a G2-rated geomagnetic storm. The satellites were commanded into a safe mode, but increased atmospheric drag prevented the satellites from leaving safe mode to begin maneuvering from the low deployment altitude to an operational orbit. On 8 February 2022, SpaceX confirmed that up to 40 of the 49 deployed satellites will reenter or have reentered the Earth's atmosphere. [75] [76] By 12 February, 38 satellites had reentered the atmosphere while the remaining 11 continued to raise their orbits. [77] | |
37 | Group 4-8 | v1.5 | 2022-016 | 21 February 2022, 14:44:20 [78] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 46 | 46 | Success | ||
38 | Group 4-11 | v1.5 | 2022-017 | 25 February 2022, 17:12:10 [79] | Vandenberg, SLC-4E | 540 km (340 mi) | 53.2° | 50 | 48 | Success | ||
39 | Group 4-9 | v1.5 | 2022-022 | 3 March 2022, 14:25 [80] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 47 | 47 | Success | ||
40 | Group 4-10 | v1.5 | 2022-025 | 9 March 2022, 13:45:10 [81] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 48 | 47 | Success | Starlink 3680 (or Starlink 2022-025P) launched in this stack has maneuvered and moved to Shell 1 of starlink satellites. Possibly some other satellites in this stack will also joining the Shell 1 Starlinks in near future. [82] | |
41 | Group 4-12 | v1.5 | 2022-029 | 19 March 2022, 04:42:30 [83] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 47 | Success | ||
42 | Group 4-14 | v1.5 | 2022-041 | 21 April 2022, 17:51:40 [84] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 51 | Success | ||
43 | Group 4-16 | v1.5 | 2022-045 | 29 April 2022, 21:27:10 [85] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 52 | Success | ||
44 | Group 4-17 | v1.5 | 2022-049 | 6 May 2022, 09:42 [86] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 53 | 53 | Success | ||
45 | Group 4-13 | v1.5 | 2022-051 | 13 May 2022, 22:07:50 [87] | Vandenberg, SLC-4E | 540 km (340 mi) | 53.2° | 53 | 53 | Success | ||
46 | Group 4-15 | v1.5 | 2022-052 | 14 May 2022, 20:40:50 [88] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 53 | Success | ||
47 | Group 4-18 | v1.5 | 2022-053 | 18 May 2022, 10:59:40 [89] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 53 | 53 | Success | ||
48 | Group 4-19 | v1.5 | 2022-062 | 17 June 2022, 16:09:20 [90] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 53 | 53 | Success | ||
49 | Group 4-21 | v1.5 | 2022-076 | 7 July 2022, 13:11:10 [91] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 52 | Success | ||
50 | Group 3-1 | v1.5 | 2022-077 | 11 July 2022, 01:39:40 [92] | Cape Canaveral, SLC-40 | 560 km (350 mi) | 97.6° | 46 | 46 | Success | ||
51 | Group 4-22 | v1.5 | 2022-083 | 17 July 2022, 14:20 [93] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 53 | Success | ||
52 | Group 3-2 | v1.5 | 2022-084 | 22 July 2022, 17:39:40 [94] | Vandenberg, SLC-4E | 560 km (350 mi) | 97.6° | 46 | 46 | Success | ||
53 | Group 4-25 | v1.5 | 2022-086 | 24 July 2022, 13:38:20 [95] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 53 | 51 | Success | ||
54 | Group 4-26 | v1.5 | 2022-097 | 10 August 2022, 02:14:40 [96] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 52 | 51 | Success | ||
55 | Group 3-3 | v1.5 | 2022-099 | 12 August 2022, 21:40:20 [97] | Vandenberg, SLC-4E | 560 km (350 mi) | 97.6° | 46 | 46 | Success | ||
56 | Group 4-27 | v1.5 | 2022-101 | 19 August 2022, 19:21:20 [98] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 53 | 53 | Success | ||
57 | Group 4-23 | v1.5 | 2022-104 | 28 August 2022, 03:41 [99] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 54 | 51 | Success | Heaviest Falcon 9 launch carrying an east-coast Starlink network launch for 53.2° inclination orbit located at 540 km altitude. This flight, Group 4-23, was moved from 39A to 40 to de-conflict with Artemis I operations at 39B, and booster B1069.2 from the 4-20 mission was swapped with B1067.6. [99] | |
58 | Group 3-4 | v1.5 | 2022-105 | 31 August 2022, 05:40:10 [100] | Vandenberg, SLC-4E | 560 km (350 mi) | 97.6° | 46 | 46 | Success | ||
59 | Group 4-20 | v1.5 | 2022-107 | 5 September 2022, 02:09:40 [101] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 51 | 46 | Success | Rideshare satellites: Sherpa-LTC2 carried a sole hosted payload will be Boeing's Varuna Technology Demonstration Mission, a pathfinder for a planned constellation of broadband satellites. | |
60 | Group 4-2 | v1.5 | 2022-111 | 11 September 2022, 01:20 [102] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 34 | 31 | Success | Rideshare satellites: BlueWalker-3 was released into a 513 km circular orbit. [102] | |
61 | Group 4-34 | v1.5 | 2022-114 | 19 September 2022, 00:18:40 [103] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 54 | 53 | Success | ||
62 | Group 4-35 | v1.5 | 2022-119 | 24 September 2022, 23:32:10 [104] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 52 | 51 | Success | ||
63 | Group 4-29 | v1.5 | 2022-125 | 5 October 2022, 23:10:30 [105] | Vandenberg, SLC-4E | 540 km (340 mi) | 53.2° | 52 | 52 | Success | ||
64 | Group 4-36 | v1.5 | 2022-136 | 20 October 2022, 14:50:40 [106] | Cape Canaveral, SLC-40 | 540 km (340 mi) | 53.2° | 54 | 53 | Success | ||
65 | Group 4-31 | v1.5 | 2022-141 | 28 October 2022, 01:14 [107] | Vandenberg, SLC-4E | 540 km (340 mi) | 53.2° | 53 | 52 | Success | ||
66 | Group 4-37 | v1.5 | 2022-175 | 17 December 2022, 21:32 [108] | Kennedy, LC-39A | 540 km (340 mi) | 53.2° | 54 | 54 | Success | ||
67 | Group 5-1 | v1.5 | 2022-177 | 28 December 2022, 9:34 [109] | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 54 | 54 | Success | First launch into an initial shell of the second generation Starlink constellation. [109] | |
68 | Group 2-4 | v1.5 | 2023-010 | 19 January 2023, 15:43 [110] | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 51 | 50 | Success | ||
69 | Group 5-2 | v1.5 | 2023-013 | 26 January 2023, 9:32 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 56 | 55 | Success | ||
70 | Group 2-6 | v1.5 | 2023-014 | 31 January 2023, 16:15 | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 49 | 48 | Success | Rideshare satellites: ION SCV-009 carries HPS' ADEO-N3, EPFL's Bunny, and StardustMe's SD-1 as hosted payloads. [111] [112] ION SCV-009 will deploy a satellite simulator using EBAD's 8" Payload Release Ring. | |
71 | Group 5-3 | v1.5 | 2023-015 | 2 February 2023, 7:58 | Kennedy, LC-39A | 530 km (330 mi) | 43.0° | 53 | 51 | Success | ||
72 | Group 5-4 | v1.5 | 2023-020 | 12 February 2023, 5:10 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 55 | 54 | Success | ||
73 | Group 2-5 | v1.5 | 2023-021 | 17 February 2023, 19:12 | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 51 | 50 | Success | ||
74 | Group 6-1 | v2 mini | 2023-026 | 27 February 2023, 23:13 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 21 | 12 | Success | First launch of larger, upgraded Starlink V2 Mini satellites with four times the bandwidth of previous models. First use of an Argon-fueled Hall-effect thruster in space, with higher thrust and specific impulse and much lower propellant cost than SpaceX's previous Krypton-fueled thrusters. [113] With the unknown of when Starship will be able to launch the second generation satellites, SpaceX modified the original V2 blueprint into a smaller, more compact one named “V2 Mini.” This adjustment, allowed Falcon 9 to transport these satellites, though not as many, into orbit. [114] The first launch of the second satellites occurred on Monday, February 27, 2023 at Cape Canaveral Space Force Station in Florida on SLC-40. Falcon 9 successfully carried 21 of these satellites into orbit later that evening. SpaceX committed to reduce debris by keeping the Starlink tension rods, which hold the V2 mini satellites together, attached to the Falcon 9 second stage. These tension rods were discarded into orbit while launching earlier version of Starlink satellites. [115] Observations confirm these V2 mini satellites host two solar panels like the Starship V2 satellites. [116] | |
75 | Group 2-7 | v1.5 | 2023-028 | 3 March 2023, 18:38 | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 51 | 51 | Success | ||
76 | Group 2-8 | v1.5 | 2023-037 | 17 March 2023, 19:26 | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 52 | 52 | Success | ||
77 | Group 5-5 | v1.5 | 2023-042 | 24 March 2023, 15:43 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 56 | 56 | Success | ||
78 | Group 5-10 | v1.5 | 2023-046 | 29 March 2023, 20:01 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 56 | 56 | Success | ||
79 | Group 6-2 | v2 mini | 2023-056 | 19 April 2023, 14:31 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 21 | 20 | Success | ||
80 | Group 3-5 | v1.5 | 2023-058 | 27 April 2023, 13:40 | Vandenberg, SLC-4E | 560 km (350 mi) | 97.6° | 46 | 46 | Success | ||
81 | Group 5-6 | v1.5 | 2023-061 | 4 May 2023, 07:31 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 56 | 55 | Success | ||
82 | Group 2-9 | v1.5 | 2023-064 | 10 May 2023, 20:09 | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 51 | 51 | Success | ||
83 | Group 5-9 | v1.5 | 2023-065 | 14 May 2023, 05:03 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 56 | 55 | Success | ||
84 | Group 6-3 | v2 mini | 2023-067 | 19 May 2023, 06:19 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 21 | Success | ||
85 | Group 2-10 | v1.5 | 2023-078 | 31 May 2023, 06:02 | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° | 52 | 52 | Success | ||
86 | Group 6-4 | v2 mini | 2023-079 | 4 June 2023, 12:20 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 19 | Success | ||
87 | Group 5-11 | v1.5 | 2023-083 | 12 June 2023, 07:10 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 52 | 52 | Success | ||
88 | Group 5-7 | v1.5 | 2023-088 | 22 June 2023, 07:19 | Vandenberg, SLC-4E | 530 km (330 mi) | 43.0° | 47 | 47 | Success | ||
89 | Group 5-12 | v1.5 | 2023-090 | 23 June 2023, 15:35 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 56 | 56 | Success | ||
90 | Group 5-13 | v1.5 | 2023-094 | 7 July 2023, 19:29 | Vandenberg, SLC-4E | 530 km (330 mi) | 43.0° | 48 | 47 | Success | ||
91 | Group 6-5 | v2 mini | 2023-096 | 10 July 2023, 03:58 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
92 | Group 5-15 | v1.5 | 2023-099 | 16 July 2023, 03:50 | Cape Canaveral, SLC-40 | 530 km (330 mi) | 43.0° | 54 | 54 | Success | ||
93 | Group 6-15 | v2 mini | 2023-102 | 19 July 2023, 04:09 | Vandenberg, SLC-4E | 559 km (347 mi) | 43.0° | 15 | 15 | Success | ||
94 | Group 6-6 | v2 mini | 2023-105 | 24 July 2023, 00:50 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
95 | Group 6-7 | v2 mini | 2023-107 | 28 July 2023, 04:01 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 20 | Success | ||
96 | Group 6-8 | v2 mini | 2023-113 | 7 August 2023, 02:41 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
97 | Group 6-20 | v2 mini | 2023-115 | 8 August 2023, 03:57 | Vandenberg, SLC-4E | 559 km (347 mi) | 43.0° | 15 | 15 | Success | ||
98 | Group 6-9 | v2 mini | 2023-119 | 11 August 2023, 05:17 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 21 | Success | ||
99 | Group 6-10 | v2 mini | 2023-122 | 17 August 2023, 03:36 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
100 | Group 7-1 | v2 mini | 2023-124 | 22 August 2023, 09:37 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 21 | 21 | Success | ||
101 | Group 6-11 | v2 mini | 2023-129 | 27 August 2023, 01:05 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 21 | Success | ||
102 | Group 6-13 | v2 mini | 2023-131 | 1 September 2023, 02:21 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
103 | Group 6-12 | v2 mini | 2023-134 | 4 September 2023, 02:47 | Kennedy, LC-39A | 559 km (347 mi) | 43.0° | 21 | 21 | Success | ||
104 | Group 6-14 | v2 mini | 2023-138 | 9 September 2023, 03:12 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
105 | Group 7-2 | v2 mini | 2023-141 | 12 September 2023, 06:57 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 21 | 21 | Success | ||
106 | Group 6-16 | v2 mini | 2023-144 | 16 September 2023, 03:38 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
107 | Group 6-17 | v2 mini | 2023-146 | 20 September 2023, 03:38 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
108 | Group 6-18 | v2 mini | 2023-147 | 24 September 2023, 03:38 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 21 | Success | ||
109 | Group 7-3 | v2 mini | 2023-148 | 25 September 2023, 08:48 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 21 | 21 | Success | ||
110 | Group 6-19 | v2 mini | 2023-151 | 30 September 2023, 02:00 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
111 | Group 6-21 | v2 mini | 2023-153 | 5 October 2023, 05:36 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
112 | Group 7-4 | v2 mini | 2023-156 | 9 October 2023, 07:23 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 21 | 21 | Success | ||
113 | Group 6-22 | v2 mini | 2023-158 | 13 October 2023, 23:01 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
114 | Group 6-23 | v2 mini | 2023-160 | 18 October 2023, 00:39 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 22 | 22 | Success | ||
115 | Group 7-5 | v2 mini | 2023-161 | 21 October 2023, 08:23 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 21 | 21 | Success | ||
116 | Group 6-24 | v2 mini | 2023-162 | 22 October 2023, 02:17 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
117 | Group 7-6 | v2 mini | 2023-166 | 29 October 2023, 09:00 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
118 | Group 6-25 | v2 mini | 2023-167 | 30 October 2023, 23:20 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
119 | Group 6-26 | v2 mini | 2023-170 | 4 November 2023, 00:37 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
120 | Group 6-27 | v2 mini | 2023-171 | 8 November 2023, 05:05 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
121 | Group 6-28 | v2 mini | 2023-177 | 18 November 2023, 05:05 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
122 | Group 7-7 | v2 mini | 2023-178 | 20 November 2023, 10:30 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
123 | Group 6-29 | v2 mini | 2023-180 | 22 November 2023, 07:47 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
124 | Group 6-30 | v2 mini | 2023-183 | 28 November 2023, 04:20 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
125 | Group 6-31 | v2 mini | 2023-186 | 3 December 2023, 04:00 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
126 | Group 6-33 | v2 mini | 2023-191 | 7 December 2023, 05:07 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
127 | Group 7-8 | v2 mini | 2023-192 | 8 December 2023, 08:03 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
128 | Group 6-34 | v2 mini | 2023-200 | 19 December 2023, 04:00 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
129 | Group 6-32 | v2 mini | 2023-203 | 23 December 2023, 04:00 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 22 | Success | ||
130 | Group 6-36 | v2 mini | 2023-211 | 29 December 2023, 04:00 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 22 | Success | ||
131 | Group 7-9 | v2 mini | 2024-002 | 3 January 2024, 03:44 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 21 | 6 | 21 | Success | First with Direct to Cell capability, allowing satellites to act as a cellphone tower in space, allowing network integration similar to a standard roaming partner [117] |
132 | Group 6-35 | v2 mini | 2024-005 | 7 January 2024, 22:35 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
133 | Group 7-10 | v2 mini | 2024-011 | 14 January 2024, 08:59 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
134 | Group 6-37 | v2 mini | 2024-012 | 15 January 2024, 01:52 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
135 | Group 7-11 | v2 mini | 2024-017 | 24 January 2024, 00:35 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
136 | Group 6-38 | v2 mini | 2024-019 | 29 January 2024, 01:10 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
137 | Group 7-12 | v2 mini | 2024-020 | 29 January 2024, 05:02 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
138 | Group 7-13 | v2 mini | 2024-027 | 10 February 2024, 00:34 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 21 | Success | ||
139 | Group 7-14 | v2 mini | 2024-031 | 15 February 2024, 21:34 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
140 | Group 7-15 | v2 mini | 2024-036 | 23 February 2024, 04:11 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
141 | Group 6-39 | v2 mini | 2024-038 | 25 February 2024, 22:06 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 24 | 24 | Success | ||
142 | Group 6-40 | v2 mini | 2024-041 | 29 February 2024, 15:30 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 22 | Success | ||
143 | Group 6-41 | v2 mini | 2024-044 | 4 March 2024, 23:54 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
144 | Group 6-43 | v2 mini | 2024-045 | 11 March 2024, 00:03 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
145 | Group 7-17 | v2 mini | 2024-046 | 11 March 2024, 04:09 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 23 | 23 | Success | ||
146 | Group 6-44 | v2 mini | 2024-049 | 16 March 2024, 00:21 | Kennedy, LC-39A | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
147 | Group 7-16 | v2 mini | 2024-050 | 19 March 2024, 02:28 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 20 | 20 | Success | Rideshare satellites: Two Starshield satellites. [118] [119] [120] | |
148 | Group 6-42 | v2 mini | 2024-056 | 24 March 2024, 03:09 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
149 | Group 6-46 | v2 mini | 2024-057 | 25 March 2024, 23:42 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
150 | Group 6-45 | v2 mini | 2024-060 | 31 March 2024, 01:30 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
151 | Group 7-18 | v2 mini | 2024-062 | 2 April 2024, 02:30 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 22 | 22 | Success | ||
152 | Group 6-47 | v2 mini | 2024-064 | 5 April 2024, 09:12 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
153 | Group 8-1 | v2 mini | 2024-065 | 7 April 2024, 02:25 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 21 | 6 | 21 | Success | |
154 | Group 6-48 | v2 mini | 2024-068 | 10 April 2024, 04:40 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
155 | Group 6-49 | v2 mini | 2024-071 | 13 April 2024, 01:40 | Kennedy, LC-39A | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
156 | Group 6-51 | v2 mini | 2024-073 | 17 April 2024, 21:24 | Kennedy, LC-39A | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
157 | Group 6-52 | v2 mini | 2024-074 | 18 April 2024, 22:40 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
158 | Group 6-53 | v2 mini | 2024-076 | 23 April 2024, 22:17 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
159 | Group 6-54 | v2 mini | 2024-080 | 28 April 2024, 21:50 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
160 | Group 6-55 | v2 mini | 2024-082 | 3 May 2024, 01:49 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
161 | Group 6-57 | v2 mini | 2024-084 | 6 May 2024, 18:14 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
162 | Group 6-56 | v2 mini | 2024-086 | 8 May 2024, 18:42 | Kennedy, LC-39A | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
163 | Group 8-2 | v2 mini | 2024-088 | 10 May 2024, 04:30 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
164 | Group 6-58 | v2 mini | 2024-090 | 13 May 2024, 00:53 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
165 | Group 8-7 | v2 mini | 2024-091 | 14 May 2024, 18:39 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
166 | Group 6-59 | v2 mini | 2024-093 | 18 May 2024, 00:32 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
167 | Group 6-62 | v2 mini | 2024-097 | 23 May 2024, 02:33 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
168 | Group 6-63 | v2 mini | 2024-098 | 24 May 2024, 02:45 | Kennedy, LC-39A | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
169 | Group 6-60 | v2 mini | 2024-100 | 28 May 2024, 14:24 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
170 | Group 6-64 | v2 mini | 2024-106 | 1 June 2024, 02:37 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
171 | Group 8-5 | v2 mini | 2024-107 | 5 June 2024, 02:16 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
172 | Group 10-1 | v2 mini | 2024-111 | 8 June 2024, 01:56 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 22 | 22 | Success | ||
173 | Group 8-8 | v2 mini | 2024-112 | 8 June 2024, 12:58 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
174 | Group 9-1 | v2 mini | 2024-113 | 19 June 2024, 03:40 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
175 | Group 10-2 | v2 mini | 2024-117 | 23 June 2024, 17:15 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 22 | 22 | Success | ||
176 | Group 9-2 | v2 mini | 2024-118 | 24 June 2024, 03:47 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
177 | Group 10-3 | v2 mini | 2024-120 | 27 June 2024, 11:14 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 23 | 23 | Success | ||
178 | Group 8-9 | v2 mini | 2024-124 | 3 July 2024, 08:55 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
179 | Group 9-3 | v2 mini | 2024-129 | 12 July 2024, 02:39 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 0 | Failure | Experienced launch failure. During launch a liquid oxygen leak developed, causing the upper stage to fail during the second burn. [121] The satellites were left in a very low, unusable orbit. [122] |
180 | Group 10-9 | v2 mini | 2024-131 | 27 July 2024, 05:45 | Kennedy, LC-39A | 279 km (173 mi) | 53.16° | 23 | 23 | Success | ||
181 | Group 10-4 | v2 mini | 2024-132 | 28 July 2024, 04:17 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 23 | 23 | Success | ||
182 | Group 9-4 | v2 mini | 2024-133 | 28 July 2024, 07:24 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 21 | 13 | 21 | Success | |
183 | Group 10-6 | v2 mini | 2024-136 | 2 August 2024, 05:01 | Kennedy, LC-39A | 279 km (173 mi) | 53.16° | 23 | 23 | Success | ||
184 | Group 11-1 | v2 mini | 2024-138 | 4 August 2024, 07:24 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 23 | 23 | Success | ||
185 | Group 8-3 | v2 mini | 2024-141 | 10 August 2024, 12:50 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 53.00° | 21 | 13 | 21 | Success | |
186 | Group 10-7 | v2 mini | 2024-144 | 12 August 2024, 10:37 | Kennedy, LC-39A | 279 km (173 mi) | 53.16° | 23 | 23 | Success | ||
187 | Group 10-5 | v2 mini | 2024-150 | 20 August 2024, 13:20 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 22 | 22 | Success | ||
188 | Group 8-6 | v2 mini | 2024-152 | 28 August 2024, 06:54 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 53.00° | 21 | 13 | 21 | Success | |
189 | Group 8-10 | v2 mini | 2024-154 | 31 August 2024, 07:43 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 53.00° | 21 | 13 | 21 | Success | |
190 | Group 9-5 | v2 mini | 2024-155 | 31 August 2024, 08:48 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 21 | 13 | 21 | Success | |
191 | Group 8-11 | v2 mini | 2024-158 | 5 September 2024, 15:33 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 53.00° | 21 | 13 | 21 | Success | |
192 | Group 9-6 | v2 mini | 2024-164 | 13 September 2024, 01:45 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 21 | 13 | 21 | Success | |
193 | Group 9-17 | v2 mini | 2024-171 | 20 September 2024, 13:50 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
194 | Group 9-8 | v2 mini | 2024-175 | 25 September 2024, 04:01 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
195 | Group 10-10 | v2 mini | 2024-183 | 15 October 2024, 06:10 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 20 | 13 | 23 | Success | |
196 | Group 9-7 | v2 mini | 2024-184 | 15 October 2024, 08:21 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
197 | Group 8-19 | v2 mini | 2024-187 | 18 October 2024, 23:31 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
198 | Group 6-61 | v2 mini | 2024-191 | 23 October 2024, 21:47 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
199 | Group 10-8 | v2 mini | 2024-193 | 26 October 2024, 21:47 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 22 | 22 | Success | ||
200 | Group 9-9 | v2 mini | 2024-195 | 30 October 2024, 12:07 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | 200th launch of dedicated starlink missions. |
201 | Group 10-13 | v2 mini | 2024-196 | 30 October 2024, 21:10 | Cape Canaveral, SLC-40 | 279 km (173 mi) | 53.16° | 23 | 23 | Success | ||
202 | Group 6-77 | v2 mini | 2024-202 | 7 November 2024, 20:19 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 23 | Success | ||
203 | Group 9-10 | v2 mini | 2024-204 | 9 November 2024, 06:14 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
204 | Group 6-69 | v2 mini | 2024-207 | 11 November 2024, 21:28 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 24 | 24 | Success | ||
205 | Group 9-11 | v2 mini | 2024-209 | 14 November 2024, 05:23 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
206 | Group 6-68 | v2 mini | 2024-210 | 14 November 2024, 13:21 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 24 | 24 | Success | ||
207 | Group 9-12 | v2 mini | 2024-213 | 18 November 2024, 05:53 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
208 | Group 6-66 | v2 mini | 2024-216 | 21 November 2024, 16:07 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 24 | 24 | Success | ||
209 | Group 9-13 | v2 mini | 2024-217 | 24 November 2024, 05:25 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
210 | Group 12-1 | v2 mini | 2024-220 | 25 November 2024, 10:02 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 12 | 23 | Success | |
211 | Group 6-76 | v2 mini | 2024-222 | 27 November 2024, 04:41 | Kennedy, LC-39A | 559 km (347 mi) | 43.0° | 24 | 24 | Success | ||
212 | Group 6-65 | v2 mini | 2024-224 | 30 November 2024, 05:00 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 24 | 24 | Success | ||
213 | Group N-01[ citation needed ] | v2 mini | 2024-225 | 30 November 2024, 08:10 | Vandenberg, SLC-4E | 570 km (350 mi) | 70.0° [123] | 20 | 20 | Success | The 20 Starlink satellites were launched together with two Starshields from NROL-126 mission | |
214 | Group 6-70 | v2 mini | 2024-229 | 4 December 2024, 10:13 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 24 | 24 | Success | ||
215 | Group 9-14 | v2 mini | 2024-231 | 5 December 2024, 03:05 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 20 | 13 | 20 | Success | |
216 | Group 12-5 | v2 mini | 2024-237 | 8 December 2024, 05:12 | Cape Canaveral, SLC-40 | 559 km (347 mi) | 43.0° | 23 | 13 | 23 | Success | |
217 | Group 11-2 | v2 mini | 2024-239 | 13 December 2024, 21:55 | Vandenberg, SLC-4E | 535 km (332 mi) | 53.00° | 22 | 13 | 22 | Success |
As of 14 December 2024 [update] : [4]
No. | Mission name or designation | Sat. ver. | COSPAR ID | Date and time, UTC | Launch site | Orbit | Satellites | Outcome | Customer | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Altitude | Orbital inclination | Deployed | Working | ||||||||
– | USA 312-313 [125] | v1 | 2020-101 | 19 December 2020 14:00:00 | Kennedy, LC-39A | 540 km (340 mi) [125] | 53° | 2 [125] | 2 | Success | National Reconnaissance Office |
Possibly launched on NROL-108 mission. Likely test Starshield satellites. [125] | |||||||||||
1 | USA 320-323 | v1.5 | 2022-002 | 13 January 2022 15:25:38 | Cape Canaveral, SLC-40 | 525 km (326 mi) | 97.6° | 4 | 1 | Success | Unknown US Government Agency |
Likely test versions or operational Starshield satellites. Part of Transporter-3 (SmallSat Rideshare Mission 3). | |||||||||||
2 | USA 328-331 | v1.5 | 2022-064 | 19 June 2022 04:27 | Cape Canaveral, SLC-40 | 535 km (332 mi) | 52° | 4 | 4 | Success | Unknown US Government Agency |
Likely test versions or operational Starshield satellites. Launched with Globalstar-2 FM-15 (M087) mission. | |||||||||||
3 | Tracking Layer (Tranche 0A) | v1.5 | 2023-050 | 2 April 2023 14:29 | Vandenberg, SLC-4E | 951 km (591 mi) [126] | 80.99° [126] | 2 [127] | 2 | Success | Space Development Agency |
Likely operational Starshield satellites. Hosts infrared payloads manufactured by Leidos. Launched with 8 York Space Systems-built Transport layer satellites on this mission. [128] [129] | |||||||||||
4 | Tracking Layer (Tranche 0B) | v1.5 | 2023-133 | 2 September 2023 14:25 | Vandenberg, SLC-4E | 951 km (591 mi) [126] | 80.99° | 2 [127] | 2 | Success | Space Development Agency |
Likely operational Starshield satellites. Hosts infrared payloads manufactured by Leidos. Launched with one York Space Systems-built and 10 Lockheed Martin/Tyvak Space Systems-built Transport layer satellites on this mission. [129] | |||||||||||
5 | USA 350-351 | v2 mini | 2024-050 | 19 March 2024, 02:28 | Vandenberg, SLC-4E | 525 km (326 mi) | 53.05° | 2 | 2 | Success | Unknown US Government Agency |
Launched as a part of Starlink Group 7-16 mission. [119] [118] | |||||||||||
6 | USA 354-374 | v2 mini | 2024-096 | 22 May 2024 08:00 | Vandenberg, SLC-4E | 310 km (190 mi) | 69.7° | 21 [130] | 21 [130] | Success | National Reconnaissance Office |
Launched as a part of NROL-146 mission. [131] | |||||||||||
7 | USA 375-395 | v2 mini | 2024-121 | 29 June 2024 03:14 | Vandenberg, SLC-4E | 310 km (190 mi) | 69.7° | 21 [130] | 21 [130] | Success | National Reconnaissance Office |
Launched as a part of NROL-186 mission. [132] | |||||||||||
8 | USA 400-420 | v2 mini | 2024-160 | 6 September 2024 03:20 | Vandenberg, SLC-4E | 310 km (190 mi) | 70° | 21 [130] | 21 [130] | Success | National Reconnaissance Office |
Launched as a part of NROL-113 mission. [133] | |||||||||||
9 | USA 421-437 | v2 mini | 2024-192 | 24 October 2024 17:13 | Vandenberg, SLC-4E | 310 km (190 mi) | 70° | 17 [130] | 17 [130] | Success | National Reconnaissance Office |
Launched as a part of NROL-167 mission. | |||||||||||
10 | USA 438-439 | v2 mini | 2024-225 | 30 November 2024 08:10 | Vandenberg, SLC-4E | 310 km (190 mi) | 70° | 2 [130] | 2 [130] | Success | National Reconnaissance Office |
Launched as a part of NROL-126 mission with Starlink Group N-01 mission. | |||||||||||
11 | USA 440-460 | v2 mini | 2024-xxx | 2024 | Vandenberg, SLC-4E | 310 km (190 mi) | 70° | 17-21 [130] | 17-21 [130] | Planned | National Reconnaissance Office |
Launched as a part of NROL-149 mission. | |||||||||||
12 | USA 4xx-4xx | v2 mini | 2024-xxx | 2024 | Vandenberg, SLC-4E | 310 km (190 mi) | 70° | TBA [130] | TBA [130] | Planned | National Reconnaissance Office |
Launched as a part of NROL-153 mission. | |||||||||||
13 | USA 4xx-4xx | v2 mini | 2024-xxx | 2024 | Vandenberg, SLC-4E | 310 km (190 mi) | 70° | TBA [130] | TBA [130] | Planned | National Reconnaissance Office |
Launched as a part of NROL-192 mission. |
Falcon 9 is a partially reusable, human-rated, two-stage-to-orbit, medium-lift launch vehicle designed and manufactured in the United States by SpaceX. The first Falcon 9 launch was on 4 June 2010, and the first commercial resupply mission to the International Space Station (ISS) launched on 8 October 2012. In 2020, it became the first commercial rocket to launch humans to orbit. The Falcon 9 has an exceptional safety record, with 407 successful launches, two in-flight failures, one partial failure and one pre-flight destruction. It is the most-launched American orbital rocket in history.
Falcon Heavy is a super heavy-lift launch vehicle with partial reusability that can carry cargo into Earth orbit and beyond. It is designed, manufactured and launched by American aerospace company SpaceX.
This article documents notable spaceflight events during the year 2019.
This article documents notable spaceflight events during the year 2018. For the first time since 1990, more than 100 orbital launches were performed globally.
An autonomous spaceport drone ship (ASDS) is a modified ocean-going barge equipped with propulsion systems to maintain precise position and a large landing platform. SpaceX developed these vessels to recover the first stage of its launch vehicles. By recovering and reusing these boosters, SpaceX has significantly reduced the cost of space launch.
Starlink is a satellite internet constellation operated by Starlink Services, LLC, an international telecommunications provider that is a wholly owned subsidiary of American aerospace company SpaceX, providing coverage to over 100 countries and territories. It also aims to provide global mobile broadband. Starlink has been instrumental to SpaceX's growth.
This article documents notable spaceflight events during the year 2020.
Falcon 9 booster B1048 was a reusable orbital-class Block 5 Falcon 9 first-stage booster manufactured by SpaceX. B1048 was the third Falcon 9 Block 5 to fly and the second Block 5 booster to re-fly. It became the second orbital-class booster to fly a third time and is the first booster ever to be launched five times. B1048 service came to an end on its fifth flight when an engine shut down prematurely on launch. Whilst the primary mission was unaffected and the Starlink payload deployed successfully, B1048 was unable to land. In a subsequent investigation, SpaceX found that isopropyl alcohol, used as cleaning fluid, was trapped and ignited causing the engine to be shut down. To address the issue, in a following launch SpaceX indicated that the cleaning process was not done.
Falcon 9 booster B1058 was a reusable Falcon 9 Block 5 first-stage booster manufactured by SpaceX. B1058 was the first Falcon 9 booster to fly fourteen, fifteen, sixteen, seventeen, eighteen and nineteen times and broke a turnaround record on its later flights. Its first flight was for Crew Dragon Demo-2, the first crewed orbital spaceflight by a private company. The booster was the first and only Falcon 9 booster to feature NASA's worm logo and meatball insignia, which was reintroduced after last being used in 1992. The booster was destroyed after successfully landing on the autonomous spaceport drone ship, Just Read the Instructions. B1058 toppled over as the drone ship sailed toward Port Canaveral in rough seas.
Falcon 9 B1060 was a Falcon 9 first-stage booster manufactured and operated by SpaceX. It was the senior active booster vehicle for the company since the demise of B1058 on 25 December 2023 during transit back to shore, until being expended for the Galileo FOC FM25 & FM27 mission on 28 April 2024. It had flown 20 missions and landed 19 times.
Space Exploration Holdings, LLC seeks to modify its Ku/Ka-band NGSO license to relocate satellites previously authorized to operate at an altitude of 1,150 km (710 mi) to an altitude of 550 km (340 mi), and to make related changes to the operations of the satellites in this new lower shell of the constellationThis article incorporates text from this source, which is in the public domain.
{{cite web}}
: CS1 maint: numeric names: authors list (link)Falcon 9's second stage performed its first burn nominally, however a liquid oxygen leak developed on the second stage. After a planned relight of the upper stage engine to raise perigee – or the lowest point of orbit – the Merlin Vacuum engine experienced an anomaly and was unable to complete its second burn. This left the satellites in an eccentric orbit with a very low perigee of 135 km, which is less than half the expected perigee altitude. [...] At this level of drag, our maximum available thrust is unlikely to be enough to successfully raise the satellites.