Mission type | Oceanography mission | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Operator | NASA, NOAA, CNES, EUMETSAT | ||||||||||||||||
COSPAR ID | 2016-002A | ||||||||||||||||
SATCAT no. | 41240 | ||||||||||||||||
Website | https://www.nesdis.noaa.gov/jason-3 | ||||||||||||||||
Mission duration | 5 years (planned) 8 years, 8 months and 14 days (elapsed) | ||||||||||||||||
Spacecraft properties | |||||||||||||||||
Bus | Proteus | ||||||||||||||||
Manufacturer | Thales Alenia Space | ||||||||||||||||
Launch mass | 553 kg (1,219 lb) [1] | ||||||||||||||||
Dry mass | 525 kg (1,157 lb) [1] | ||||||||||||||||
Power | 550 watts | ||||||||||||||||
Start of mission | |||||||||||||||||
Launch date | 17 January 2016, 18:42:18 UTC [2] | ||||||||||||||||
Rocket | Falcon 9 v1.1 | ||||||||||||||||
Launch site | Vandenberg, SLC-4E | ||||||||||||||||
Contractor | SpaceX | ||||||||||||||||
Orbital parameters | |||||||||||||||||
Reference system | Geocentric orbit [3] | ||||||||||||||||
Regime | Low Earth orbit | ||||||||||||||||
Perigee altitude | 1,331.7 km (827.5 mi) | ||||||||||||||||
Apogee altitude | 1,343.7 km (834.9 mi) | ||||||||||||||||
Inclination | 66.04° | ||||||||||||||||
Period | 112.42 minutes | ||||||||||||||||
Repeat interval | 9.92 days | ||||||||||||||||
| |||||||||||||||||
Jason-3 is a satellite altimeter created by a partnership of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and National Aeronautic and Space Administration (NASA), and is an international cooperative mission in which National Oceanic and Atmospheric Administration (NOAA) is partnering with the Centre National d'Études Spatiales (CNES, French space agency). The satellite's mission is to supply data for scientific, commercial, and practical applications to sea level rise, sea surface temperature, ocean temperature circulation, and climate change. [4]
Jason-3 makes precise measurements related to global sea-surface height. Because sea surface height is measured via altimetry, mesoscale ocean features are better simulated since the Jason-3 radar altimeter can measure global sea-level variations with very high accuracy. [5] [6] The scientific goal is to produce global sea-surface height measurements every 10 days to an accuracy of less than 4 cm. [7] In order to calibrate the radar altimeter, a microwave radiometer measures signal delay caused by atmospheric vapors, ultimately correcting the altimeter's accuracy to 3.3 cm. [5] [8] This data is important to collect and analyze because it is a critical factor in understanding the changes in Earth's climate brought on by global warming as well as ocean circulation. [6] NOAA's National Weather Service uses Jason-3's data to more accurately forecast tropical cyclones. [9]
The primary users of Jason-3 data are people who are dependent on marine and weather forecasts for public safety, commerce and environmental purposes. Other users include scientists and people who are concerned with global warming and its relation to the ocean. National Oceanic and Atmospheric Administration (NOAA) and European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) are using the data primarily for monitoring wind and waves on the high seas, hurricane intensity, ocean surface currents, El Niño and La Niña forecasts, water levels of lakes and rivers. Jason-3 also reports on environmental issues such as algae blooms and oil spills. [10] NASA and CNES are more interested in the research aspect, in terms of understanding and planning for climate change. Jason-3 can measure climate change via sea surface height because sea surface rise, averaged over annual time scales, is accelerated by warming global temperatures. [5] Ultimately, the benefits of Jason-3 data will transfer to people and to the economy.
Jason-3 flies at the same 9.9-day repeat track orbit and this means the satellite will make observations over the same ocean point every 9.9 days. The orbital parameters are: 66.05º inclination, 1,380 km apogee, 1,328 km perigee, 112 minutes per revolution around Earth. It was set to fly 1 minute behind the now decommissioned Jason-2. The 1-minute time delay was applied in order to not miss any data collection between missions.
In order to detect sea level change, we need to know the orbit height of the satellites as they revolve around Earth, to within 1 cm (0.4 inches). Combining instruments from three different techniques—GPS, DORIS, LRA. The GPS receiver on Jason-3 uses data from the constellation of GPS satellites in orbit to constantly determine its position in orbit. [4] Similarly, DORIS is another system to help determine orbit positioning. Designed by CNES in France, DORIS uses the Doppler effect to found its system, which describes the differences in frequencies of waves between source and object. [11] [12] Thirdly, LRA (Laser Retroreflector Array), which is an instance of satellite laser ranging (SLR), uses corner reflectors on board the satellite to track the time it takes for lasers shot from Earth to reach the satellite and be reflected back, which can then be analyzed to understand the orbital positioning of Jason-3 from ground tracking stations. These three techniques (GPS, DORIS, LRA) all aid in determining orbit height and positioning. [13]
Appearing on the SpaceX manifest as early as July 2013, [14] Jason-3 was originally scheduled for launch on 22 July 2015. However, this date was pushed back to 19 August 2015 following the discovery of contamination in one of the satellite's thrusters, requiring the thruster to be replaced and further inspected. [15] [16] The launch was further delayed by several months due to the loss of a Falcon 9 rocket with the CRS-7 mission on 28 June 2015. [17]
After SpaceX conducted their return-to-flight mission in December 2015 with the upgraded Falcon 9 Full Thrust, Jason-3 was assigned to the final previous-generation Falcon 9 v1.1 rocket, although some parts of the rocket body had been reworked following the findings of the failure investigation. [18] [19]
A 7-second static fire test of the rocket was completed on 11 January 2016. [20] The Launch Readiness Review was signed off by all parties on 15 January 2016, and the launch proceeded successfully on 17 January 2016, at 18:42 UTC. The Jason-3 payload was deployed into its target orbit at 830 mi (1,340 km) altitude after an orbital insertion burn about 56 minutes into the flight. [21] It was the 21st Falcon 9 flight overall [18] and the second into a high-inclination orbit from Vandenberg Air Force Base Space Launch Complex 4E in California. [15]
Following paperwork filed with US regulatory authorities in 2015, [22] SpaceX confirmed in January 2016 that they would attempt a controlled-descent flight test and vertical landing of the rocket's first stage on their west-coast floating platform Just Read the Instructions, [23] located about 200 mi (320 km) out in the Pacific Ocean.
This attempt followed the first successful landing and booster recovery on the previous launch in December 2015. [24] [25] The controlled descent through the atmosphere and landing attempt for each booster is an arrangement that is not used on other orbital launch vehicles. [26]
Approximately nine minutes into the flight, the live video feed from the drone ship went down due to the losing its lock on the uplink satellite. Elon Musk later reported that the first stage did touch down smoothly on the ship, but a lockout on one of the four landing legs failed to latch, so that the booster fell over and was destroyed. [27] [28] [29]
Debris from the fire, including several rocket engines attached to the octaweb assembly, arrived back to shore on board the floating landing platform on 18 January 2016. [30]
A reusable launch vehicle has parts that can be recovered and reflown, while carrying payloads from the surface to outer space. Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as rocket engines and boosters can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly. However, these benefits are diminished by the cost of recovery and refurbishment.
The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is an intergovernmental organisation created through an international convention agreed by a current total of 30 European Member States.
TOPEX/Poseidon was a joint satellite altimeter mission between NASA, the U.S. space agency; and CNES, the French space agency, to map ocean surface topography. Launched on August 10, 1992, it was the first major oceanographic research satellite. TOPEX/Poseidon helped revolutionize oceanography by providing data previously impossible to obtain. Oceanographer Walter Munk described TOPEX/Poseidon as "the most successful ocean experiment of all time." A malfunction ended normal satellite operations in January 2006.
Falcon 9 is a partially reusable, human-rated, two-stage-to-orbit, medium-lift launch vehicle designed and manufactured in the United States by SpaceX. The first Falcon 9 launch was on 4 June 2010, and the first commercial resupply mission to the International Space Station (ISS) launched on 8 October 2012. In 2020, it became the first commercial rocket to launch humans to orbit. The Falcon 9 has an exceptional safety record, with 376 successful launches, two in-flight failures, one partial failure and one pre-flight destruction. It is the most-launched American rocket in history.
OSTM/Jason-2, or Ocean Surface Topography Mission/Jason-2 satellite, was an international Earth observation satellite altimeter joint mission for sea surface height measurements between NASA and CNES. It was the third satellite in a series started in 1992 by the NASA/CNES TOPEX/Poseidon mission and continued by the NASA/CNES Jason-1 mission launched in 2001.
Orbcomm is a family of low Earth orbit communications satellites, operated by the United States satellite communications company Orbcomm. As of July 2014, 51 such satellites have orbited Earth, with 50 still continuing to do so.
SARAL is a cooperative altimetry technology mission of Indian Space Research Organisation (ISRO) and Centre National d'Études Spatiales (CNES). SARAL performs altimetric measurements designed to study ocean circulation and sea surface elevation.
Falcon Heavy is a heavy-lift launch vehicle with partial reusability that can carry cargo into Earth orbit, and beyond. It is designed, manufactured and launched by American aerospace company SpaceX.
SpaceX CRS-8, also known as SpX-8, was a Commercial Resupply Service mission to the International Space Station (ISS) which was launched on April 8, 2016, at 20:43 UTC. It was the 23rd flight of a Falcon 9 rocket, the tenth flight of a Dragon cargo spacecraft and the eighth operational mission contracted to SpaceX by NASA under the Commercial Resupply Services program. The capsule carried over 3,100 kilograms (6,800 lb) of cargo to the ISS including the Bigelow Expandable Activity Module (BEAM), a prototype inflatable space habitat delivered in the vehicle's trunk, which was attached to the station and, as of May 2022, is expected to remain so for five more full years of in-orbit viability tests.
Falcon 9 v1.1 was the second version of SpaceX's Falcon 9 orbital launch vehicle. The rocket was developed in 2011–2013, made its maiden launch in September 2013, and its final flight in January 2016. The Falcon 9 rocket was fully designed, manufactured, and operated by SpaceX. Following the second Commercial Resupply Services (CRS) launch, the initial version Falcon 9 v1.0 was retired from use and replaced by the v1.1 version.
The Falcon 9 first-stage landing tests were a series of controlled-descent flight tests conducted by SpaceX between 2013 and 2016. Since 2017, the first stage of Falcon 9 rockets are routinely landed if the performance requirements of the launch allow.
An autonomous spaceport drone ship (ASDS) is a modified ocean-going barge equipped with propulsion systems to maintain precise position and a large landing platform. SpaceX developed these vessels to recover the first stage of its launch vehicles. By recovering and reusing these boosters, SpaceX has significantly reduced the cost of space launch.
SpaceX CRS-10, also known as SpX-10, was a Dragon Commercial Resupply Service mission to the International Space Station (ISS) which launched on 19 February 2017. The mission was contracted by NASA as part of its Commercial Resupply Services program and was launched by SpaceX aboard the 30th flight of the Falcon 9 rocket. The mission ended on 19 March 2017 when the Dragon spacecraft left the ISS and safely returned to Earth.
The year 2022 witnessed the number of launches of SpaceX's Falcon rocket family surpassing the CNSA's Long March rocket family, making the United States the country with the highest number of launches in 2022 instead of China. This year also featured the first successful launch of Long March 6A, Nuri, Angara 1.2, Vega C, Kinetica-1, and Jielong-3. National space agencies' activities in this year is also marred by the Russian invasion of Ukraine, leading to tension between Roscosmos and Western space agencies, threats of ending collaboration on the International Space Station (ISS), and delays on space missions.
The year 2024 is expected to exceed 2023's 223 orbital launches. So far, the year saw the successful first launch of Vulcan Centaur, Gravity-1, Ariane 6, and notably more developmental launches of SpaceX's Starship – with IFT-5, and IFT-6 planned for this year. Additionally, the final launch of a Delta family rocket occurred in April with a Delta IV Heavy. In May, China launched the Chang'e 6, the first sample return from the far side of the Moon. The Polaris Dawn mission conducted the first ever commercial spacewalk in September.
The Sentinel-6 Michael Freilich (S6MF) or Sentinel-6A is a radar altimeter satellite developed in partnership between several European and American organizations. It is part of the Jason satellite series and is named after Michael Freilich. S6MF includes synthetic-aperture radar altimetry techniques to improve ocean topography measurements, in addition to rivers and lakes. The spacecraft entered service in mid 2021 and is expected to operate for 5.5 years.
Our investigation is ongoing until we exonerate all other aspects of the vehicle, but at this time, we expect to return to flight this fall and fly all the customers we intended to fly in 2015 by end of year.
At Space Launch Complex 4 on Vandenberg Air Force Base in California, the static test fire of the SpaceX Falcon 9 rocket for the upcoming Jason-3 launch was completed Monday at 5:35 p.m. PST, 8:35 p.m. EST. The first stage engines fired for the planned full duration of 7 seconds.
This mission also marks SpaceX's return-to-flight as well as its first attempt to land a first stage on land. The landing of the first stage is a secondary test objective.