Ocean current

Last updated
Ocean surface currents Corrientes-oceanicas.png
Ocean surface currents
Distinctive white lines trace the flow of surface currents around the world.
Visualization showing global ocean currents from January 1, 2010, to December 31, 2012, at sea level, then at 2,000 m (6,600 ft) below sea level
Animation of circulation around ice shelves of Antarctica

An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. [1] Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and strength. Ocean currents move both horizontally, on scales that can span entire oceans, as well as vertically, with vertical currents (upwelling and downwelling) playing an important role in the movement of nutrients and gases, such as carbon dioxide, between the surface and the deep ocean.

Contents

Ocean currents flow for great distances and together they create the global conveyor belt, which plays a dominant role in determining the climate of many of Earth's regions. More specifically, ocean currents influence the temperature of the regions through which they travel. For example, warm currents traveling along more temperate coasts increase the temperature of the area by warming the sea breezes that blow over them. Perhaps the most striking example is the Gulf Stream, which, together with its extension the North Atlantic Drift, makes northwest Europe much more temperate for its high latitude than other areas at the same latitude. Another example is Lima, Peru, whose cooler subtropical climate contrasts with that of its surrounding tropical latitudes because of the Humboldt Current.

The largest ocean current is the Antarctic Circumpolar Current (ACC), a wind-driven current which flows clockwise uninterrupted around Antarctica. The ACC connects all the ocean basins together, and also provides a link between the atmosphere and the deep ocean due to the way water upwells and downwells on either side of it.

Ocean currents are patterns of water movement that influence climate zones and weather patterns around the world. They are primarily driven by winds and by seawater density, although many other factors influence them – including the shape and configuration of the ocean basin they flow through. The two basic types of currents – surface and deep-water currents – help define the character and flow of ocean waters across the planet.the ocean current is divided in to two warm ocean current and cold ocean current

Causes

The bathymetry of the Kerguelen Plateau in the Southern Ocean governs the course of the Kerguelen deep western boundary current, part of the global network of ocean currents. CSIRO ScienceImage 11128 The bathymetry of the Kerguelen Plateau in the Southern Ocean governs the course of the new current part of the global network of ocean currents.jpg
The bathymetry of the Kerguelen Plateau in the Southern Ocean governs the course of the Kerguelen deep western boundary current, part of the global network of ocean currents.

Ocean currents are driven by the wind, by the gravitational pull of the moon in the form of tides, and by the effects of variations in water density. [4] Ocean dynamics define and describe the motion of water within the oceans.

Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean (above the thermocline), and deep ocean. Ocean currents are measured in units of sverdrup (Sv), where 1 Sv is equivalent to a volume flow rate of 1,000,000 m3 (35,000,000 cu ft) per second.

There are two main types of currents, surface currents and deep water currents. Generally surface currents are driven by wind systems and deep water currents are driven by differences in water density due to variations in water temperature and salinity. [5]

Wind-driven circulation

Surface oceanic currents are driven by wind currents, the large scale prevailing winds drive major persistent ocean currents, and seasonal or occasional winds drive currents of similar persistence to the winds that drive them, [6] and the Coriolis effect plays a major role in their development. [7] The Ekman spiral velocity distribution results in the currents flowing at an angle to the driving winds, and they develop typical clockwise spirals in the northern hemisphere and counter-clockwise rotation in the southern hemisphere. [8] In addition, the areas of surface ocean currents move somewhat with the seasons; this is most notable in equatorial currents.

Deep ocean basins generally have a non-symmetric surface current, in that the eastern equator-ward flowing branch is broad and diffuse whereas the pole-ward flowing western boundary current is relatively narrow.

Thermohaline circulation

Coupling data collected by NASA/JPL by several different satellite-borne sensors, researchers have been able to "break through" the ocean's surface to detect "Meddies" - super-salty warm-water eddies that originate in the Mediterranean Sea and then sink more than a half-mile underwater in the Atlantic Ocean. The Meddies are shown in red in this scientific figure. Meddes-20060320-browse.jpg
Coupling data collected by NASA/JPL by several different satellite-borne sensors, researchers have been able to "break through" the ocean's surface to detect "Meddies" – super-salty warm-water eddies that originate in the Mediterranean Sea and then sink more than a half-mile underwater in the Atlantic Ocean. The Meddies are shown in red in this scientific figure.

Large scale currents are driven by gradients in water density, which in turn depend on variations in temperature and salinity. This thermohaline circulation is also known as the ocean's conveyor belt. Where significant vertical movement of ocean currents is observed, this is known as upwelling and downwelling. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of seawater.

The thermohaline circulation is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. [9] [10] Wind-driven surface currents (such as the Gulf Stream) travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes (forming North Atlantic Deep Water). This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters (with a transit time of around 1000 years) [11] upwell in the North Pacific. [12] Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. On their journey, the water masses transport both energy (in the form of heat) and matter (solids, dissolved substances and gases) around the globe. As such, the state of the circulation has a large impact on the climate of the Earth. The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt. On occasion, it is imprecisely used to refer to the meridional overturning circulation, (MOC).

Since the 2000s an international program called Argo has been mapping the temperature and salinity structure of the ocean with a fleet of automated platforms that float with the ocean currents. The information gathered will help explain the role the oceans play in the earth's climate. [13]

Effects on climate and ecology

Ocean currents affect temperatures throughout the world. For example, the ocean current that brings warm water up the north Atlantic to northwest Europe also cumulatively and slowly blocks ice from forming along the seashores, which would also block ships from entering and exiting inland waterways and seaports, hence ocean currents play a decisive role in influencing the climates of regions through which they flow. [14] Ocean currents are important in the study of marine debris. [15] [16]

Plankton are dispersed by ocean currents. Marine microplankton.jpg
Plankton are dispersed by ocean currents.

Upwellings and cold ocean water currents flowing from polar and sub-polar regions bring in nutrients that support plankton growth, which are crucial prey items for several key species in marine ecosystems. [17]

Ocean currents are also important in the dispersal and distribution of many organisms, inclusing those with pelagic egg or larval stages. [18] An example is the life-cycle of the European Eel. Terrestrial species, for example tortoises and lizards, can be carried on floating debris by currents to colonise new terrestrial areas and islands. [18]

Ocean currents and climate change

The continued rise of atmospheric temperatures is anticipated to have various effects on the strength of surface ocean currents, wind-driven circulation and dispersal patterns. [19] [20] [21] Ocean currents play a significant role in influencing climate, and shifts in climate in turn impact ocean currents. [20]

Human-induced climate change is leading to long-term alterations in ocean and atmospheric circulation. The accumulation of greenhouse gases traps extra heat within the Earth's system, causing both the atmosphere and oceans to warm. Notably, over 90% of this trapped heat is absorbed by the oceans. There are signs that crucial circulation patterns are shifting, with growing evidence suggesting that the Atlantic Meridional Overturning Circulation may be slowing down. Fig 1.4.1 Atmospheric circulation cells, dominant wind directions.png
Human-induced climate change is leading to long-term alterations in ocean and atmospheric circulation. The accumulation of greenhouse gases traps extra heat within the Earth’s system, causing both the atmosphere and oceans to warm. Notably, over 90% of this trapped heat is absorbed by the oceans. There are signs that crucial circulation patterns are shifting, with growing evidence suggesting that the Atlantic Meridional Overturning Circulation may be slowing down.

Over the last century, reconstructed sea surface temperature data reveal that western boundary currents are heating at double the rate of the global average. [22] These observations indicate that the western boundary currents are likely intensifying due to this change in temperature, and may continue to grow stronger in the near future. [20] There is evidence that surface warming due to anthropogenic climate change has accelerated upper ocean currents in 77% of the global ocean. [21] Specifically, increased vertical stratification due to surface warming intensifies upper ocean currents, while changes in horizontal density gradients caused by differential warming across different ocean regions results in the acceleration of surface zonal currents. [21]

There are suggestions that the Atlantic meridional overturning circulation (AMOC) is in danger of collapsing due to climate change, which would have extreme impacts on the climate of northern Europe and more widely, [23] [24] [25] although this topic is controversial and remains an active area of research. [26] [27] [28] The "State of the cryosphere" report, dedicates significant space to AMOC, saying it may be enroute to collapse because of ice melt and water warming. In the same time, the Antarctic Circumpolar Current (ACC) is also slowing down and is expected to lose 20% of it power by the year 2050, "with widespread impacts on ocean circulation and climate". [29] UNESCO mentions that the report in the first time "notes a growing scientific consensus that melting Greenland and Antarctic ice sheets, among other factors, may be slowing important ocean currents at both poles, with potentially dire consequences for a much colder northern Europe and greater sea-level rise along the U.S. East Coast." [30]

In addition to water surface temperatures, the wind systems are a crucial determinant of ocean currents. [31] Wind wave systems influence oceanic heat exchange, the condition of the sea surface, and can alter ocean currents. [32] In the North Atlantic, equatorial Pacific, and Southern Ocean, increased wind speeds as well as significant wave heights have been attributed to climate change and natural processes combined. [32] In the East Australian Current, global warming has also been accredited to increased wind stress curl, which intensifies these currents, and may even indirectly increase sea levels, due to the additional warming created by stronger currents. [33]

As ocean circulation changes due to climate, typical distribution patterns are also changing. The dispersal patterns of marine organisms depend on oceanographic conditions, which as a result, influence the biological composition of oceans. [19] Due to the patchiness of the natural ecological world, dispersal is a species survival mechanism for various organisms. [34] With strengthened boundary currents moving toward the poles, it is expected that some marine species will be redirected to the poles and greater depths. [19] [35] The strengthening or weakening of typical dispersal pathways by increased temperatures are expected to not only impact the survival of native marine species due to inability to replenish their meta populations but also may increase the prevalence of invasive species. [19] In Japanese corals and macroalgae, the unusual dispersal pattern of organisms toward the poles may destabilize native species. [36]

Economic importance

Knowledge of surface ocean currents is essential in reducing costs of shipping, since traveling with them reduces fuel costs. In the wind powered sailing-ship era, knowledge of wind patterns and ocean currents was even more essential. Using ocean currents to help their ships into harbor and using currents such as the gulf stream to get back home. [37] The lack of understanding of ocean currents during that time period is hypothesized to be one of the contributing factors to exploration failure. The Gulf Stream and the Canary current keep western European countries warmer and less variable, while at the same latitude North America's weather was colder. [38] A good example of this is the Agulhas Current (down along eastern Africa), which long prevented sailors from reaching India.

In recent times, around-the-world sailing competitors make good use of surface currents to build and maintain speed. Ocean currents can also be used for marine power generation, with areas of Japan, Florida and Hawaii being considered for test projects. The utilization of currents today can still impact global trade, it can reduce the cost and emissions of shipping vessels. [39]

Skipjack tuna fishery in Indonesia. Skipjack tuna transporting at Pondokdadap Fishingport.jpg
Skipjack tuna fishery in Indonesia.

Ocean currents can also impact the fishing industry, examples of this include the Tsugaru, Oyashio and Kuroshio currents all of which influence the western North Pacific temperature, which has been shown to be a habitat predictor for the Skipjack tuna. [40] It has also been shown that it is not just local currents that can affect a country's economy, but neighboring currents can influence the viability of local fishing industries. [41]

Distribution

A 1943 map of the world's ocean currents Ocean currents 1943 (borderless)3.png
A 1943 map of the world's ocean currents

Currents of the Arctic Ocean

Currents of the Atlantic Ocean

A recording current meter. It records information about currents (speed, direction, depth, temperature). Recording Current Meter.jpg
A recording current meter. It records information about currents (speed, direction, depth, temperature).

Currents of the Indian Ocean

Currents of the Pacific Ocean

Currents of the Southern Ocean

Oceanic gyres

See also

Related Research Articles

<span class="mw-page-title-main">Antarctic Circumpolar Current</span> Ocean current that flows clockwise from west to east around Antarctica

Antarctic Circumpolar Current (ACC) is an ocean current that flows clockwise from west to east around Antarctica. An alternative name for the ACC is the West Wind Drift. The ACC is the dominant circulation feature of the Southern Ocean and has a mean transport estimated at 100–150 Sverdrups, or possibly even higher, making it the largest ocean current. The current is circumpolar due to the lack of any landmass connecting with Antarctica and this keeps warm ocean waters away from Antarctica, enabling that continent to maintain its huge ice sheet.

<span class="mw-page-title-main">North Atlantic Current</span> Current of the Atlantic Ocean

The North Atlantic Current (NAC), also known as North Atlantic Drift and North Atlantic Sea Movement, is a powerful warm western boundary current within the Atlantic Ocean that extends the Gulf Stream northeastward.

<span class="mw-page-title-main">North Atlantic Deep Water</span> Deep water mass formed in the North Atlantic Ocean

North Atlantic Deep Water (NADW) is a deep water mass formed in the North Atlantic Ocean. Thermohaline circulation of the world's oceans involves the flow of warm surface waters from the southern hemisphere into the North Atlantic. Water flowing northward becomes modified through evaporation and mixing with other water masses, leading to increased salinity. When this water reaches the North Atlantic, it cools and sinks through convection, due to its decreased temperature and increased salinity resulting in increased density. NADW is the outflow of this thick deep layer, which can be detected by its high salinity, high oxygen content, nutrient minima, high 14C/12C, and chlorofluorocarbons (CFCs).

<span class="mw-page-title-main">Downwelling</span> Process of accumulation and sinking of higher density material beneath lower density material

Downwelling is the downward movement of a fluid parcel and its properties within a larger fluid. It is closely related to upwelling, the upward movement of fluid.

<span class="mw-page-title-main">Weddell Sea</span> Part of the Southern Ocean between Coats Land and the Antarctic Peninsula

The Weddell Sea is part of the Southern Ocean and contains the Weddell Gyre. Its land boundaries are defined by the bay formed from the coasts of Coats Land and the Antarctic Peninsula. The easternmost point is Cape Norvegia at Princess Martha Coast, Queen Maud Land. To the east of Cape Norvegia is the King Haakon VII Sea. Much of the southern part of the sea is covered by a permanent, massive ice shelf field, the Filchner-Ronne Ice Shelf.

<span class="mw-page-title-main">Physical oceanography</span> Study of physical conditions and processes within the ocean

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

<span class="mw-page-title-main">Thermohaline circulation</span> Part of large-scale ocean circulation

Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes. This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. The water in these circuits transport both energy and mass around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.

<span class="mw-page-title-main">Ocean gyre</span> Any large system of circulating ocean surface currents

In oceanography, a gyre is any large system of ocean surface currents moving in a circular fashion driven by wind movements. Gyres are caused by the Coriolis effect; planetary vorticity, horizontal friction and vertical friction determine the circulatory patterns from the wind stress curl (torque).

<span class="mw-page-title-main">Kuroshio Current</span> North flowing ocean current on the west side of the North Pacific Ocean

The Kuroshio Current, also known as the Black Current or Japan Current is a north-flowing, warm ocean current on the west side of the North Pacific Ocean basin. It was named for the deep blue appearance of its waters. Similar to the Gulf Stream in the North Atlantic, the Kuroshio is a powerful western boundary current that transports warm equatorial water poleward and forms the western limb of the North Pacific Subtropical Gyre. Off the East Coast of Japan, it merges with the Oyashio Current to form the North Pacific Current.

<span class="mw-page-title-main">North Atlantic Gyre</span> Major circular system of ocean currents

The North Atlantic Gyre of the Atlantic Ocean is one of five great oceanic gyres. It is a circular ocean current, with offshoot eddies and sub-gyres, across the North Atlantic from the Intertropical Convergence Zone to the part south of Iceland, and from the east coasts of North America to the west coasts of Europe and Africa.

<span class="mw-page-title-main">North Equatorial Current</span> Current in the Pacific and Atlantic Oceans

The North Equatorial Current (NEC) is a westward wind-driven current mostly located near the equator, but the location varies from different oceans. The NEC in the Pacific and the Atlantic is about 5°-20°N, while the NEC in the Indian Ocean is very close to the equator. It ranges from the sea surface down to 400 m in the western Pacific.

<span class="mw-page-title-main">North Pacific Gyre</span> Major circulating system of ocean currents

The North Pacific Gyre (NPG) or North Pacific Subtropical Gyre (NPSG), located in the northern Pacific Ocean, is one of the five major oceanic gyres. This gyre covers most of the northern Pacific Ocean. It is the largest ecosystem on Earth, located between the equator and 50° N latitude, and comprising 20 million square kilometers. The gyre has a clockwise circular pattern and is formed by four prevailing ocean currents: the North Pacific Current to the north, the California Current to the east, the North Equatorial Current to the south, and the Kuroshio Current to the west. It is the site of an unusually intense collection of human-created marine debris, known as the Great Pacific Garbage Patch.

<span class="mw-page-title-main">Atlantic meridional overturning circulation</span> System of surface and deep currents in the Atlantic Ocean

The Atlantic meridional overturning circulation (AMOC) is the main ocean current system in the Atlantic Ocean. It is a component of Earth's ocean circulation system and plays an important role in the climate system. The AMOC includes Atlantic currents at the surface and at great depths that are driven by changes in weather, temperature and salinity. Those currents comprise half of the global thermohaline circulation that includes the flow of major ocean currents, the other half being the Southern Ocean overturning circulation.

The Tasman Outflow is a water pathway connecting water from the Pacific Ocean and the Indian Ocean. The existence of the outflow was published by scientists of the Australian CSIRO's Division of Marine and Atmospheric Research team in August 2007, interpreting salinity and temperature data captured from 1950 to 2002. The Tasman Outflow is seen as the missing link in the supergyre of the Southern Hemisphere and an important part of the thermohaline circulation.

<span class="mw-page-title-main">Outline of oceanography</span> Hierarchical outline list of articles related to oceanography

The following outline is provided as an overview of and introduction to Oceanography.

<span class="mw-page-title-main">Boundary current</span> Ocean current with dynamics determined by the presence of a coastline

Boundary currents are ocean currents with dynamics determined by the presence of a coastline, and fall into two distinct categories: western boundary currents and eastern boundary currents.

<span class="mw-page-title-main">Gulf Stream</span> Warm Atlantic Ocean current

The Gulf Stream is a warm and swift Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida and up the eastern coastline of the United States, then veers east near 36°N latitude and moves toward Northwest Europe as the North Atlantic Current. The process of western intensification causes the Gulf Stream to be a northward-accelerating current off the east coast of North America. Around 40°0′N30°0′W, it splits in two, with the northern stream, the North Atlantic Drift, crossing to Northern Europe and the southern stream, the Canary Current, recirculating off West Africa.

<span class="mw-page-title-main">Cold blob</span> Cold temperature anomaly North Atlantic surface waters

The cold blob in the North Atlantic describes a cold temperature anomaly of ocean surface waters, affecting the Atlantic Meridional Overturning Circulation (AMOC) which is part of the thermohaline circulation, possibly related to global warming-induced melting of the Greenland ice sheet.

A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. The direction of flow is influenced by the Coriolis effect, and is offset to the right of the wind direction in the Northern Hemisphere, and to the left in the Southern Hemisphere. A wind current can induce secondary water flow in the form of upwelling and downwelling, geostrophic flow, and western boundary currents.

Oceanic freshwater fluxes are defined as the transport of non saline water between the oceans and the other components of the Earth's system. These fluxes have an impact on the local ocean properties, as well as on the large scale circulation patterns.

References

  1. "What is a current?". NOAA's National Ocean Service. 2009-03-01. Retrieved 2023-03-14.
  2. 1 2 "Massive Southern Ocean current discovered". ScienceDaily. Apr 27, 2010.
  3. 1 2 Yasushi Fukamachi, Stephen Rintoul; et al. (Apr 2010). "Strong export of Antarctic Bottom Water east of the Kerguelen plateau". Nature Geoscience. 3 (5): 327–331. Bibcode:2010NatGe...3..327F. doi:10.1038/NGEO842. hdl: 2115/44116 . S2CID   67815755.
  4. National Oceanic and Atmospheric Administration (16 June 2024). "What is a current?". oceanservice.noaa.gov. Retrieved 2024-09-03.
  5. National Oceanic and Atmospheric Administration (1 August 2011). "Ocean currents". www.noaa.gov. Retrieved 2024-09-14.{{cite web}}: CS1 maint: date and year (link)
  6. "Current". www.nationalgeographic.org. National Geographic. 2 September 2011. Retrieved 7 January 2021.
  7. "Ocean Currents of the World: Causes". 29 August 2020. Retrieved 2020-11-20.
  8. National Ocean Service (March 25, 2008). "Surface Ocean Currents". noaa.gov. National Oceanic and Atmospheric Administration. Archived from the original on July 6, 2017. Retrieved 2017-06-13.
  9. Rahmstorf, S (2003). "The concept of the thermohaline circulation" (PDF). Nature. 421 (6924): 699. Bibcode:2003Natur.421..699R. doi: 10.1038/421699a . PMID   12610602. S2CID   4414604.
  10. Lappo, SS (1984). "On reason of the northward heat advection across the Equator in the South Pacific and Atlantic ocean". Study of Ocean and Atmosphere Interaction Processes. Moscow Department of Gidrometeoizdat (in Mandarin): 125–9.
  11. The global ocean conveyor belt is a constantly moving system of deep-ocean circulation driven by temperature and salinity; What is the global ocean conveyor belt?
  12. Primeau, F (2005). "Characterizing transport between the surface mixed layer and the ocean interior with a forward and adjoint global ocean transport model" (PDF). Journal of Physical Oceanography. 35 (4): 545–64. Bibcode:2005JPO....35..545P. doi:10.1175/JPO2699.1 (inactive 1 December 2024). S2CID   130736022.{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)
  13. Scripps Institution of Oceanography, UC San Diego. "Argo". Argo. Archived from the original on 1 September 2024. Retrieved 2024-09-05.
  14. "What Is the Gulf Stream? | NOAA SciJinks – All About Weather". scijinks.gov. Retrieved 2024-04-15.
  15. National Oceanic and Atmospheric Administration (1 April 2020). "Ocean pollution and marine debris". www.noaa.gov. Retrieved 2024-09-08.
  16. van Sebille, Erik; Aliani, Stefano; Law, Kara Lavender; Maximenko, Nikolai; Alsina, José M; Bagaev, Andrei; Bergmann, Melanie; Chapron, Bertrand; Chubarenko, Irina; Cózar, Andrés; Delandmeter, Philippe; Egger, Matthias; Fox-Kemper, Baylor; Garaba, Shungudzemwoyo P; Goddijn-Murphy, Lonneke (2020-02-01). "The physical oceanography of the transport of floating marine debris". Environmental Research Letters. 15 (2): 023003. Bibcode:2020ERL....15b3003V. doi:10.1088/1748-9326/ab6d7d. hdl: 2117/187082 . ISSN   1748-9326.
  17. Royce, William F., ed. (1996). "Circulation". Introduction to the Practice of Fishery Science. Elsevier. doi:10.1016/b978-0-12-600952-1.x5000-2. ISBN   978-0-12-600952-1.
  18. 1 2 Hays, Graeme C. (5 June 2017). "Ocean currents and marine life". Current Biology. 27 (11): R470–R473. Bibcode:2017CBio...27.R470H. doi:10.1016/j.cub.2017.01.044. PMID   28586681.
  19. 1 2 3 4 Wilson, Laura J.; Fulton, Christopher J.; Hogg, Andrew McC; Joyce, Karen E.; Radford, Ben T. M.; Fraser, Ceridwen I. (2016-05-02). "Climate-driven changes to ocean circulation and their inferred impacts on marine dispersal patterns". Global Ecology and Biogeography. 25 (8): 923–939. Bibcode:2016GloEB..25..923W. doi:10.1111/geb.12456. ISSN   1466-822X.
  20. 1 2 3 Miller, Johanna L. (2017). "Ocean currents respond to climate change in unexpected ways". Physics Today. 70 (1): 17–18.
  21. 1 2 3 Peng, Qihua; Xie, Shang-Ping; Wang, Dongxiao; Huang, Rui Xin; Chen, Gengxin; Shu, Yeqiang; Shi, Jia-Rui; Liu, Wei (2022-04-22). "Surface warming–induced global acceleration of upper ocean currents". Science Advances. 8 (16): eabj8394. Bibcode:2022SciA....8J8394P. doi:10.1126/sciadv.abj8394. ISSN   2375-2548. PMC   9020668 . PMID   35442733.
  22. Wu, Lixin; Cai, Wenju; Zhang, Liping; Nakamura, Hisashi; Timmermann, Axel; Joyce, Terry; McPhaden, Michael J.; Alexander, Michael; Qiu, Bo; Visbeck, Martin; Chang, Ping; Giese, Benjamin (2012-01-29). "Enhanced warming over the global subtropical western boundary currents". Nature Climate Change. 2 (3): 161–166. Bibcode:2012NatCC...2..161W. doi:10.1038/nclimate1353. hdl: 1912/5125 . ISSN   1758-6798.
  23. Ditlevsen, Peter; Ditlevsen, Susanne (2023-07-25). "Warning of a forthcoming collapse of the Atlantic meridional overturning circulation". Nature Communications. 14 (1): 4254. doi:10.1038/s41467-023-39810-w. ISSN   2041-1723. PMC   10368695 . PMID   37491344.
  24. Zhu, Chenyu; Liu, Zhengyu; Zhang, Shaoqing; Wu, Lixin (2023-03-04). "Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint". Nature Communications. 14 (1): 1245. doi:10.1038/s41467-023-36288-4. ISSN   2041-1723. PMC   9985640 . PMID   36871075.
  25. Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M. (2014-12-08). "Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model". Nature Communications. 5 (1): 5752. doi:10.1038/ncomms6752. ISSN   2041-1723. PMC   4268699 . PMID   25482065.
  26. Science Media Centre (25 July 2023). "Expert reaction to paper warning of a collapse of the Atlantic meridional overturning circulation". Science Media Centre. Retrieved 2024-09-12.
  27. Rahmstorf, Stefan (10 April 2024). "Is the Atlantic Overturning Circulation Approaching a Tipping Point?". Oceanography. 37 (3): 1–0. doi: 10.5670/oceanog.2024.501 .
  28. Met Office Press (2 May 2024). "The Atlantic Meridional Overturning Circulation in a changing climate". Official blog of the Met Office news team. Retrieved 2024-09-12.
  29. State of the Cryosphere 2024 Lost Ice, Global Damage (PDF). International Cryosphere Climate Initiative. November 2024. pp. x (in the beginning), 8, 48, 52. Retrieved 20 November 2024.
  30. "State of the Cryosphere Report 2024 Lost Ice, Global Damage". UNESCO. Retrieved 20 November 2024.
  31. Constantin, Adrian (2021-01-02). "Frictional effects in wind-driven ocean currents". Geophysical & Astrophysical Fluid Dynamics. 115 (1): 1–14. Bibcode:2021GApFD.115....1C. doi: 10.1080/03091929.2020.1748614 . ISSN   0309-1929.
  32. 1 2 Dobrynin, Mikhail; Murawski, Jens; Baehr, Johanna; Ilyina, Tatiana (2015-02-15). "Detection and Attribution of Climate Change Signal in Ocean Wind Waves". Journal of Climate. 28 (4): 1578–1591. Bibcode:2015JCli...28.1578D. doi:10.1175/JCLI-D-13-00664.1 (inactive 1 December 2024). ISSN   0894-8755.{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)
  33. Cai, W.; Shi, G.; Cowan, T.; Bi, D.; Ribbe, J. (2005-12-10). "The response of the Southern Annular Mode, the East Australian Current, and the southern mid-latitude ocean circulation to global warming". Geophysical Research Letters. 32 (23). Bibcode:2005GeoRL..3223706C. doi:10.1029/2005GL024701. ISSN   0094-8276.
  34. Kininmonth, Stuart (2011-04-11). "Dispersal connectivity and reserve selection for marine conservation". Ecological Modelling. 222 (7): 1272–1282. Bibcode:2011EcMod.222.1272K. doi:10.1016/j.ecolmodel.2011.01.012.
  35. Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J. (2014-08-22). "The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts". Proceedings of the Royal Society B: Biological Sciences. 281 (1789): 20140846. doi:10.1098/rspb.2014.0846. ISSN   0962-8452. PMC   4100510 . PMID   25009065.
  36. Kumagai, Naoki H.; García Molinos, Jorge; Yamano, Hiroya; Takao, Shintaro; Fujii, Masahiko; Yamanaka, Yasuhiro (2018-09-04). "Ocean currents and herbivory drive macroalgae-to-coral community shift under climate warming". Proceedings of the National Academy of Sciences. 115 (36): 8990–8995. Bibcode:2018PNAS..115.8990K. doi: 10.1073/pnas.1716826115 . ISSN   0027-8424. PMC   6130349 . PMID   30126981.
  37. "Atlantic Ocean - Exploration, Currents, Marine Life | Britannica". www.britannica.com. Retrieved 2024-04-20.
  38. US Department of Commerce, National Oceanic and Atmospheric Administration. "Boundary Currents - Currents: NOAA's National Ocean Service Education". oceanservice.noaa.gov. Retrieved 2024-04-20.
  39. Chang, Yu-Chia; Tseng, Ruo-Shan; Chen, Guan-Yu; Chu, Peter C.; Shen, Yung-Ting (November 2013). "Ship Routing Utilizing Strong Ocean Currents". The Journal of Navigation. 66 (6): 825–835. doi:10.1017/S0373463313000441. ISSN   0373-4633.
  40. Ramesh, Nandini; Rising, James A.; Oremus, Kimberly L. (2019-06-21). "The small world of global marine fisheries: The cross-boundary consequences of larval dispersal". Science. 364 (6446): 1192–1196. Bibcode:2019Sci...364.1192R. doi:10.1126/science.aav3409. ISSN   0036-8075. PMID   31221860.
  41. Talley, Lynne D. (April 1, 1995). "North Pacific Intermediate Water in the Kuroshio/Oyashio Mixed Water Region". American Meteorological Society. 25 (4): 475–501. Bibcode:1995JPO....25..475T. doi: 10.1175/1520-0485(1995)025<0475:NPIWIT>2.0.CO;2 (inactive 1 December 2024) via AMS Publications.{{cite journal}}: CS1 maint: DOI inactive as of December 2024 (link)

Further reading