Kelvin wave

Last updated

A Kelvin wave is a wave in the ocean or atmosphere that balances the Earth's Coriolis force against a topographic boundary such as a coastline, or a waveguide such as the equator. A feature of a Kelvin wave is that it is non-dispersive, i.e., the phase speed of the wave crests is equal to the group speed of the wave energy for all frequencies. This means that it retains its shape as it moves in the alongshore direction over time.

Contents

A Kelvin wave (fluid dynamics) is also a long scale perturbation mode of a vortex in superfluid dynamics; in terms of the meteorological or oceanographical derivation, one may assume that the meridional velocity component vanishes (i.e. there is no flow in the north–south direction, thus making the momentum and continuity equations much simpler). This wave is named after the discoverer, Lord Kelvin (1879). [1] [2]

Coastal Kelvin wave

In a stratified ocean of mean depth H, free waves propagate along coastal boundaries (and hence become trapped in the vicinity of the coast itself) in the form of internal Kelvin waves on a scale of about 30 km. These waves are called coastal Kelvin waves, and have propagation speeds of approximately 2 m/s in the ocean. Using the assumption that the cross-shore velocity v is zero at the coast, v = 0, one may solve a frequency relation for the phase speed of coastal Kelvin waves, which are among the class of waves called boundary waves, edge waves, trapped waves, or surface waves (similar to the Lamb waves). [3] The (linearised) primitive equations then become the following:

If one assumes that the Coriolis coefficient f is constant along the right boundary conditions and the zonal wind speed is set equal to zero, then the primitive equations become the following:

.

The solution to these equations yields the following phase speed: c2 = gH, which is the same speed as for shallow-water gravity waves without the effect of Earth's rotation. [4] It is important to note that for an observer traveling with the wave, the coastal boundary (maximum amplitude) is always to the right in the northern hemisphere and to the left in the southern hemisphere (i.e. these waves move equatorward – negative phase speed – on a western boundary and poleward – positive phase speed – on an eastern boundary; the waves move cyclonically around an ocean basin). [3]

Equatorial Kelvin wave

An equatorial Kelvin wave, captured through sea surface height anomalies

The equatorial zone essentially acts as a waveguide, causing disturbances to be trapped in the vicinity of the Equator, and the equatorial Kelvin wave illustrates this fact because the Equator acts analogously to a topographic boundary for both the Northern and Southern Hemispheres, making this wave very similar to the coastally-trapped Kelvin wave. [3] The primitive equations are identical to those used to develop the coastal Kelvin wave phase speed solution (U-momentum, V-momentum, and continuity equations) and the motion is unidirectional and parallel to the Equator. [3] Because these waves are equatorial, the Coriolis parameter vanishes at 0 degrees; therefore, it is necessary to use the equatorial beta plane approximation that states:

where β is the variation of the Coriolis parameter with latitude. This equatorial beta plane assumption requires a geostrophic balance between the eastward velocity and the north-south pressure gradient. The phase speed is identical to that of coastal Kelvin waves, indicating that the equatorial Kelvin waves propagate toward the east without dispersion (as if the earth were a non-rotating planet). [3] For the first baroclinic mode in the ocean, a typical phase speed would be about 2.8 m/s, causing an equatorial Kelvin wave to take 2 months to cross the Pacific Ocean between New Guinea and South America; for higher ocean and atmospheric modes, the phase speeds are comparable to fluid flow speeds. [3]

When the motion at the Equator is to the east, any deviation toward the north is brought back toward the Equator because the Coriolis force acts to the right of the direction of motion in the Northern Hemisphere, and any deviation to the south is brought back toward the Equator because the Coriolis force acts to the left of the direction of motion in the Southern Hemisphere. Note that for motion toward the west, the Coriolis force would not restore a northward or southward deviation back toward the Equator; thus, equatorial Kelvin waves are only possible for eastward motion (as noted above). Both atmospheric and oceanic equatorial Kelvin waves play an important role in the dynamics of El Nino-Southern Oscillation, by transmitting changes in conditions in the Western Pacific to the Eastern Pacific.

There have been studies that connect equatorial Kelvin waves to coastal Kelvin waves. Moore (1968) found that as an equatorial Kelvin wave strikes an "eastern boundary", part of the energy is reflected in the form of planetary and gravity waves; and the remainder of the energy is carried poleward along the eastern boundary as coastal Kelvin waves. This process indicates that some energy may be lost from the equatorial region and transported to the poleward region. [3]

Equatorial Kelvin waves are often associated with anomalies in surface wind stress. For example, positive (eastward) anomalies in wind stress in the central Pacific excite positive anomalies in 20 °C isotherm depth which propagate to the east as equatorial Kelvin waves.

See also

Related Research Articles

Coriolis force A force on objects moving within a reference frame that rotates with respect to an inertial frame.

In physics, the Coriolis force is an inertial or fictitious force that acts on objects that are in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

Gravity wave Wave in or at the interface between fluids where gravity is the main equilibrium force

In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

The primitive equations are a set of nonlinear differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:

  1. A continuity equation: Representing the conservation of mass.
  2. Conservation of momentum: Consisting of a form of the Navier–Stokes equations that describe hydrodynamical flow on the surface of a sphere under the assumption that vertical motion is much smaller than horizontal motion (hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere
  3. A thermal energy equation: Relating the overall temperature of the system to heat sources and sinks
Physical oceanography The study of physical conditions and physical processes within the ocean

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Carl-Gustaf Arvid Rossby. They are observed in the atmospheres and oceans of planets owing to the rotation of the planet. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.

The geostrophic wind is the theoretical wind that would result from an exact balance between the Coriolis force and the pressure gradient force. This condition is called geostrophic balance. The geostrophic wind is directed parallel to isobars. This balance seldom holds exactly in nature. The true wind almost always differs from the geostrophic wind due to other forces such as friction from the ground. Thus, the actual wind would equal the geostrophic wind only if there were no friction and the isobars were perfectly straight. Despite this, much of the atmosphere outside the tropics is close to geostrophic flow much of the time and it is a valuable first approximation. Geostrophic flow in air or water is a zero-frequency inertial wave.

The Sverdrup balance, or Sverdrup relation, is a theoretical relationship between the wind stress exerted on the surface of the open ocean and the vertically integrated meridional (north-south) transport of ocean water.

Ekman transport Net transport of surface water perpendicular to wind direction

Ekman transport is part of Ekman motion theory, first investigated in 1902 by Vagn Walfrid Ekman. Winds are the main source of energy for ocean circulation, and Ekman Transport is a component of wind-driven ocean current. Ekman transport occurs when ocean surface waters are influenced by the friction force acting on them via the wind. As the wind blows it casts a friction force on the ocean surface that drags the upper 10-100m of the water column with it. However, due to the influence of the Coriolis effect, the ocean water moves at a 90° angle from the direction of the surface wind. The direction of transport is dependent on the hemisphere: in the northern hemisphere, transport occurs at 90° clockwise from wind direction, while in the southern hemisphere it occurs at a 90° counterclockwise. This phenomenon was first noted by Fridtjof Nansen, who recorded that ice transport appeared to occur at an angle to the wind direction during his Arctic expedition during the 1890s. Ekman transport has significant impacts on the biogeochemical properties of the world's oceans. This is because they lead to upwelling and downwelling in order to obey mass conservation laws. Mass conservation, in reference to Ekman transfer, requires that any water displaced within an area must be replenished. This can be done by either Ekman suction or Ekman pumping depending on wind patterns.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

Shallow water equations A set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow water equations are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow water equations in unidirectional form are also called Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

In atmospheric science, balanced flow is an idealisation of atmospheric motion. The idealisation consists in considering the behaviour of one isolated parcel of air having constant density, its motion on a horizontal plane subject to selected forces acting on it and, finally, steady-state conditions.

Boundary current Ocean current with dynamics determined by the presence of a coastline

Boundary currents are ocean currents with dynamics determined by the presence of a coastline, and fall into two distinct categories: western boundary currents and eastern boundary currents.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

Mild-slope equation The combined effects of diffraction and refraction for water waves propagating over variable depth and with lateral boundaries

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

Equatorial waves are oceanic and atmospheric waves trapped close to the equator, meaning that they decay rapidly away from the equator, but can propagate in the longitudinal and vertical directions. Wave trapping is the result of the Earth's rotation and its spherical shape which combine to cause the magnitude of the Coriolis force to increase rapidly away from the equator. Equatorial waves are present in both the tropical atmosphere and ocean and play an important role in the evolution of many climate phenomena such as El Niño. Many physical processes may excite equatorial waves including, in the case of the atmosphere, diabatic heat release associated with cloud formation, and in the case of the ocean, anomalous changes in the strength or direction of the trade winds.

Ocean dynamics define and describe the motion of water within the oceans. Ocean temperature and motion fields can be separated into three distinct layers: mixed (surface) layer, upper ocean, and deep ocean.

Rossby-gravity waves are equatorially trapped waves, meaning that they rapidly decay as their distance increases away from the equator. These waves have the same trapping scale as Kelvin waves, more commonly known as the equatorial Rossby deformation radius. They always carry energy eastward, but their 'crests' and 'troughs' may propagate westward if their periods are long enough.

Equatorial Rossby waves, often called planetary waves, are very long, low frequency water waves found near the equator and are derived using the equatorial beta plane approximation.

A Sverdrup wave is a wave in the ocean, which is affected by gravity and Earth's rotation.

Radiation stress The depth-integrated excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

References

  1. Thomson, W. (Lord Kelvin) (1879), "On gravitational oscillations of rotating water", Proc. Roy. Soc. Edinburgh, 10: 92–100
  2. Gill, Adrian E. (1982), Atmosphere–ocean dynamics, International Geophysics Series, 30, Academic Press, pp.  378–380, ISBN   978-0-12-283522-3
  3. 1 2 3 4 5 6 7 Gill, Adrian E., 1982: Atmosphere–Ocean Dynamics, International Geophysics Series, Volume 30, Academic Press, 662 pp.
  4. Holton, James R., 2004: An Introduction to Dynamic Meteorology. Elsevier Academic Press, Burlington, MA, pp. 394–400.