Baroclinity

Last updated
Density lines and isobars cross vertically in a baroclinic fluid. Baroclinic fluid.png
Density lines and isobars cross vertically in a baroclinic fluid.
Visualization of a (fictive) formation of isotherms (red-orange) and isobars (blue) in a baroclinic atmospheric layering. Barokline Atmosphare.svg
Visualization of a (fictive) formation of isotherms (red-orange) and isobars (blue) in a baroclinic atmospheric layering.
A rotating tank experiment modelling baroclinic eddies in the atmosphere

In fluid dynamics, the baroclinity (often called baroclinicity) of a stratified fluid is a measure of how misaligned the gradient of pressure is from the gradient of density in a fluid. [1] [2] In meteorology a baroclinic flow is one in which the density depends on both temperature and pressure (the fully general case). A simpler case, barotropic flow, allows for density dependence only on pressure, so that the curl of the pressure-gradient force vanishes.

Contents

Baroclinity is proportional to:

which is proportional to the sine of the angle between surfaces of constant pressure and surfaces of constant density. Thus, in a barotropic fluid (which is defined by zero baroclinity), these surfaces are parallel. [3] [4] [5]

In Earth's atmosphere, barotropic flow is a better approximation in the tropics, where density surfaces and pressure surfaces are both nearly level, whereas in higher latitudes the flow is more baroclinic. [6] These midlatitude belts of high atmospheric baroclinity are characterized by the frequent formation of synoptic-scale cyclones, [7] although these are not really dependent on the baroclinity term per se: for instance, they are commonly studied on pressure coordinate iso-surfaces where that term has no contribution to vorticity production.

Baroclinic instability

Baroclinic instability is a fluid dynamical instability of fundamental importance in the atmosphere and in the oceans. In the atmosphere it is the dominant mechanism shaping the cyclones and anticyclones that dominate weather in mid-latitudes. In the ocean it generates a field of mesoscale eddies (100 km or smaller) that play various roles in oceanic dynamics and the transport of tracers.

Whether a fluid counts as rapidly rotating is determined in this context by the Rossby number, which is a measure of how close the flow is to solid body rotation. More precisely, a flow in solid body rotation has vorticity that is proportional to its angular velocity. The Rossby number is a measure of the departure of the vorticity from that of solid body rotation. The Rossby number must be small for the concept of baroclinic instability to be relevant. When the Rossby number is large, other kinds of instabilities, often referred to as inertial, become more relevant.[ citation needed ]

The simplest example of a stably stratified flow is an incompressible flow with density decreasing with height.[ citation needed ]

In a compressible gas such as the atmosphere, the relevant measure is the vertical gradient of the entropy, which must increase with height for the flow to be stably stratified.[ citation needed ]

The strength of the stratification is measured by asking how large the vertical shear of the horizontal winds has to be in order to destabilize the flow and produce the classic Kelvin–Helmholtz instability. This measure is called the Richardson number . When the Richardson number is large, the stratification is strong enough to prevent this shear instability.[ citation needed ]

Before the classic work of Jule Charney and Eric Eady on baroclinic instability in the late 1940s, [8] [9] most theories trying to explain the structure of mid-latitude eddies took as their starting points the high Rossby number or small Richardson number instabilities familiar to fluid dynamicists at that time. The most important feature of baroclinic instability is that it exists even in the situation of rapid rotation (small Rossby number) and strong stable stratification (large Richardson's number) typically observed in the atmosphere.[ citation needed ]

The energy source for baroclinic instability is the potential energy in the environmental flow. As the instability grows, the center of mass of the fluid is lowered. In growing waves in the atmosphere, cold air moving downwards and equatorwards displaces the warmer air moving polewards and upwards.[ citation needed ]

Baroclinic instability can be investigated in the laboratory using a rotating, fluid filled annulus. The annulus is heated at the outer wall and cooled at the inner wall, and the resulting fluid flows give rise to baroclinically unstable waves. [10] [11]

The term "baroclinic" refers to the mechanism by which vorticity is generated. Vorticity is the curl of the velocity field. In general, the evolution of vorticity can be broken into contributions from advection (as vortex tubes move with the flow), stretching and twisting (as vortex tubes are pulled or twisted by the flow) and baroclinic vorticity generation, which occurs whenever there is a density gradient along surfaces of constant pressure. Baroclinic flows can be contrasted with barotropic flows in which density and pressure surfaces coincide and there is no baroclinic generation of vorticity.[ citation needed ]

The study of the evolution of these baroclinic instabilities as they grow and then decay is a crucial part of developing theories for the fundamental characteristics of midlatitude weather.[ citation needed ]

Baroclinic vector

Beginning with the equation of motion for a frictionless fluid (the Euler equations) and taking the curl, one arrives at the equation of motion for the curl of the fluid velocity, that is to say, the vorticity.[ citation needed ]

In a fluid that is not all of the same density, a source term appears in the vorticity equation whenever surfaces of constant density (isopycnic surfaces) and surfaces of constant pressure (isobaric surfaces) are not aligned. The material derivative of the local vorticity is given by:[ citation needed ]

(where is the velocity and is the vorticity, [12] is the pressure, and is the density). The baroclinic contribution is the vector: [13]

This vector, sometimes called the solenoidal vector, [14] is of interest both in compressible fluids and in incompressible (but inhomogeneous) fluids. Internal gravity waves as well as unstable Rayleigh–Taylor modes can be analyzed from the perspective of the baroclinic vector. It is also of interest in the creation of vorticity by the passage of shocks through inhomogeneous media, [15] [16] such as in the Richtmyer–Meshkov instability. [17] [ citation needed ]

Experienced divers are familiar with the very slow waves that can be excited at a thermocline or a halocline, which are known as internal waves. Similar waves can be generated between a layer of water and a layer of oil. When the interface between these two surfaces is not horizontal and the system is close to hydrostatic equilibrium, the gradient of the pressure is vertical but the gradient of the density is not. Therefore the baroclinic vector is nonzero, and the sense of the baroclinic vector is to create vorticity to make the interface level out. In the process, the interface overshoots, and the result is an oscillation which is an internal gravity wave. Unlike surface gravity waves, internal gravity waves do not require a sharp interface. For example, in bodies of water, a gradual gradient in temperature or salinity is sufficient to support internal gravity waves driven by the baroclinic vector.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Vortex</span> Fluid flow revolving around an axis of rotation

In fluid dynamics, a vortex is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil.

In continuum mechanics, vorticity is a pseudovector field that describes the local spinning motion of a continuum near some point, as would be seen by an observer located at that point and traveling along with the flow. It is an important quantity in the dynamical theory of fluids and provides a convenient framework for understanding a variety of complex flow phenomena, such as the formation and motion of vortex rings.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

<span class="mw-page-title-main">Rossby wave</span> Inertial wave occurring in rotating fluids

Rossby waves, also known as planetary waves, are a type of inertial wave naturally occurring in rotating fluids. They were first identified by Sweden-born American meteorologist Carl-Gustaf Arvid Rossby in the Earth's atmosphere in 1939. They are observed in the atmospheres and oceans of Earth and other planets, owing to the rotation of Earth or of the planet involved. Atmospheric Rossby waves on Earth are giant meanders in high-altitude winds that have a major influence on weather. These waves are associated with pressure systems and the jet stream. Oceanic Rossby waves move along the thermocline: the boundary between the warm upper layer and the cold deeper part of the ocean.

<span class="mw-page-title-main">Internal wave</span> Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

In fluid mechanics, the Taylor–Proudman theorem states that when a solid body is moved slowly within a fluid that is steadily rotated with a high angular velocity , the fluid velocity will be uniform along any line parallel to the axis of rotation. must be large compared to the movement of the solid body in order to make the Coriolis force large compared to the acceleration terms.

<span class="mw-page-title-main">Barotropic fluid</span> Fluid whose density is a function of pressure only

In fluid dynamics, a barotropic fluid is a fluid whose density is a function of pressure only. The barotropic fluid is a useful model of fluid behavior in a wide variety of scientific fields, from meteorology to astrophysics.

Hamiltonian fluid mechanics is the application of Hamiltonian methods to fluid mechanics. Note that this formalism only applies to nondissipative fluids.

The Sverdrup balance, or Sverdrup relation, is a theoretical relationship between the wind stress exerted on the surface of the open ocean and the vertically integrated meridional (north-south) transport of ocean water.

In fluid mechanics, potential vorticity (PV) is a quantity which is proportional to the dot product of vorticity and stratification. This quantity, following a parcel of air or water, can only be changed by diabatic or frictional processes. It is a useful concept for understanding the generation of vorticity in cyclogenesis, especially along the polar front, and in analyzing flow in the ocean.

In fluid mechanics, Kelvin's circulation theorem states:

In a barotropic, ideal fluid with conservative body forces, the circulation around a closed curve moving with the fluid remains constant with time.

<span class="mw-page-title-main">Inertial wave</span>

Inertial waves, also known as inertial oscillations, are a type of mechanical wave possible in rotating fluids. Unlike surface gravity waves commonly seen at the beach or in the bathtub, inertial waves flow through the interior of the fluid, not at the surface. Like any other kind of wave, an inertial wave is caused by a restoring force and characterized by its wavelength and frequency. Because the restoring force for inertial waves is the Coriolis force, their wavelengths and frequencies are related in a peculiar way. Inertial waves are transverse. Most commonly they are observed in atmospheres, oceans, lakes, and laboratory experiments. Rossby waves, geostrophic currents, and geostrophic winds are examples of inertial waves. Inertial waves are also likely to exist in the molten core of the rotating Earth.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Geophysical fluid dynamics</span> Dynamics of naturally occurring flows

Geophysical fluid dynamics, in its broadest meaning, refers to the fluid dynamics of naturally occurring flows, such as lava flows, oceans, and planetary atmospheres, on Earth and other planets.

In fluid dynamics, the Craik–Leibovich (CL) vortex force describes a forcing of the mean flow through wave–current interaction, specifically between the Stokes drift velocity and the mean-flow vorticity. The CL vortex force is used to explain the generation of Langmuir circulations by an instability mechanism. The CL vortex-force mechanism was derived and studied by Sidney Leibovich and Alex D. D. Craik in the 1970s and 80s, in their studies of Langmuir circulations.

A baroclinic instability is a fluid dynamical instability of fundamental importance in the atmosphere and ocean. It can lead to the formation of transient mesoscale eddies, with a horizontal scale of 10-100 km. In contrast, flows on the largest scale in the ocean are described as ocean currents, the largest scale eddies are mostly created by shearing of two ocean currents and static mesoscale eddies are formed by the flow around an obstacle (as seen in the animation on eddy. Mesoscale eddies are circular currents with swirling motion and account for approximately 90% of the ocean's total kinetic energy. Therefore, they are key in mixing and transport of for example heat, salt and nutrients.

In fluid mechanics, topographic steering is the effect of potential vorticity conservation on the motion of a fluid parcel. This means that the fluid parcels will not only react to physical obstacles in their path, but also to changes in topography or latitude. The two types of 'fluids' where topographic steering is mainly observed in daily life are air and water in respectively the atmosphere and the oceans. Examples of topographic steering can be found in, among other things, paths of low pressure systems and oceanic currents.

References

  1. Marshall, J., and R.A. Plumb. 2007. Atmosphere, Ocean, and Climate Dynamics. Academic Press,
  2. Holton (2004), p. 77.
  3. Gill (1982), p. 122: ″The strict meaning of the term ′barotropic′ is that the pressure is constant on surfaces of constant density...″
  4. Tritton (1988), p. 179: ″In general, a barotropic situation is one in which surfaces of constant pressure and surfaces of constant density coincide; a baroclinic situation is one in which they intersect.″
  5. Holton (2004), p. 74: ″A barotropic atmosphere is one in which density depends only on the pressure, , so that isobaric surfaces are also surfaces of constant density.″
  6. Robinson, J. P. (1999). Contemporary climatology. Henderson-Sellers, A. (Second ed.). Oxfordshire, England: Routledge. p. 151. ISBN   9781315842660. OCLC   893676683.
  7. Houze, Robert A. (2014-01-01), Houze, Robert A. (ed.), "Chapter 11 - Clouds and Precipitation in Extratropical Cyclones", International Geophysics, Cloud Dynamics, Academic Press, vol. 104, pp. 329–367, doi:10.1016/b978-0-12-374266-7.00011-1, ISBN   9780123742667
  8. Charney, J. G. (1947). "The dynamics of long waves in a baroclinic westerly current". Journal of Meteorology. 4 (5): 136–162. Bibcode:1947JAtS....4..136C. doi: 10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2 .
  9. Eady, E. T. (August 1949). "Long Waves and Cyclone Waves". Tellus. 1 (3): 33–52. Bibcode:1949Tell....1c..33E. doi:10.1111/j.2153-3490.1949.tb01265.x.
  10. Nadiga, B. T.; Aurnou, J. M. (2008). "A Tabletop Demonstration of Atmospheric Dynamics: Baroclinic Instability". Oceanography. 21 (4): 196–201. doi: 10.5670/oceanog.2008.24 .
  11. "Lab demos from MIT's Programmes in Atmosphere, Ocean and Climate Archived 2011-05-26 at the Wayback Machine
  12. Pedlosky (1987), p. 22.
  13. Gill (1982), p. 238.
  14. Vallis (2007), p. 166.
  15. Fujisawa, K.; Jackson, T. L.; Balachandar, S. (2019-02-22). "Influence of baroclinic vorticity production on unsteady drag coefficient in shock–particle interaction". Journal of Applied Physics. 125 (8): 084901. Bibcode:2019JAP...125h4901F. doi:10.1063/1.5055002. ISSN   0021-8979. OSTI   1614518. S2CID   127387592.
  16. Boris, J. P.; Picone, J. M. (April 1988). "Vorticity generation by shock propagation through bubbles in a gas". Journal of Fluid Mechanics. 189: 23–51. Bibcode:1988JFM...189...23P. doi:10.1017/S0022112088000904. ISSN   1469-7645. S2CID   121116029.
  17. Brouillette, Martin (2002-01-01). "The richtmyer-meshkov instability". Annual Review of Fluid Mechanics. 34 (1): 445–468. Bibcode:2002AnRFM..34..445B. doi:10.1146/annurev.fluid.34.090101.162238. ISSN   0066-4189.

Bibliography