Convective available potential energy

Last updated
A skew-T plot showing a morning sounding with a large hydrolapse followed by an afternoon sounding showing the cooling (red curve moving to the left) which occurred in the mid-levels resulting in an unstable atmosphere as surface parcels have now become negatively buoyant. The red line is temperature, the green line is the dew point, and the black line is the air parcel lifted. Convective instability animation 12Z 21Z Jan08.gif
A skew-T plot showing a morning sounding with a large hydrolapse followed by an afternoon sounding showing the cooling (red curve moving to the left) which occurred in the mid-levels resulting in an unstable atmosphere as surface parcels have now become negatively buoyant. The red line is temperature, the green line is the dew point, and the black line is the air parcel lifted.

In meteorology, convective available potential energy (commonly abbreviated as CAPE), [1] is the integrated amount of work that the upward (positive) buoyancy force would perform on a given mass of air (called an air parcel) if it rose vertically through the entire atmosphere. Positive CAPE will cause the air parcel to rise, while negative CAPE will cause the air parcel to sink. Nonzero CAPE is an indicator of atmospheric instability in any given atmospheric sounding, a necessary condition for the development of cumulus and cumulonimbus clouds with attendant severe weather hazards.

Contents

Mechanics

A Skew-T diagram with important features labeled B and LCL-LFC.jpg
A Skew-T diagram with important features labeled

CAPE exists within the conditionally unstable layer of the troposphere, the free convective layer (FCL), where an ascending air parcel is warmer than the ambient air. CAPE is measured in joules per kilogram of air (J/kg). Any value greater than 0 J/kg indicates instability and an increasing possibility of thunderstorms and hail. Generic CAPE is calculated by integrating vertically the local buoyancy of a parcel from the level of free convection (LFC) to the equilibrium level (EL):

Where is the height of the level of free convection and is the height of the equilibrium level (neutral buoyancy), where is the virtual temperature of the specific parcel, where is the virtual temperature of the environment (note that temperatures must be in the Kelvin scale), and where is the acceleration due to gravity. This integral is the work done by the buoyant force minus the work done against gravity, hence it's the excess energy that can become kinetic energy.

CAPE for a given region is most often calculated from a thermodynamic or sounding diagram (e.g., a Skew-T log-P diagram) using air temperature and dew point data usually measured by a weather balloon.

CAPE is effectively positive buoyancy, expressed B+ or simply B; the opposite of convective inhibition (CIN), which is expressed as B-, and can be thought of as "negative CAPE". As with CIN, CAPE is usually expressed in J/kg but may also be expressed as m2/s2, as the values are equivalent. In fact, CAPE is sometimes referred to as positive buoyant energy (PBE). This type of CAPE is the maximum energy available to an ascending parcel and to moist convection. When a layer of CIN is present, the layer must be eroded by surface heating or mechanical lifting, so that convective boundary layer parcels may reach their level of free convection (LFC).

On a sounding diagram, CAPE is the positive area above the LFC, the area between the parcel's virtual temperature line and the environmental virtual temperature line where the ascending parcel is warmer than the environment. Neglecting the virtual temperature correction may result in substantial relative errors in the calculated value of CAPE for small CAPE values. [2] CAPE may also exist below the LFC, but if a layer of CIN (subsidence) is present, it is unavailable to deep, moist convection until CIN is exhausted. When there is mechanical lift to saturation, cloud base begins at the lifted condensation level (LCL); absent forcing, cloud base begins at the convective condensation level (CCL) where heating from below causes spontaneous buoyant lifting to the point of condensation when the convective temperature is reached. When CIN is absent or is overcome, saturated parcels at the LCL or CCL, which had been small cumulus clouds, will rise to the LFC, and then spontaneously rise until hitting the stable layer of the equilibrium level. The result is deep, moist convection (DMC), or simply, a thunderstorm.

When a parcel is unstable, it will continue to move vertically, in either direction, dependent on whether it receives upward or downward forcing, until it reaches a stable layer (though momentum, gravity, and other forcing may cause the parcel to continue). There are multiple types of CAPE, downdraft CAPE (DCAPE), estimates the potential strength of rain and evaporatively cooled downdrafts. Other types of CAPE may depend on the depth being considered. Other examples are surface based CAPE (SBCAPE), mixed layer or mean layer CAPE (MLCAPE), most unstable or maximum usable CAPE (MUCAPE), and normalized CAPE (NCAPE). [3]

Fluid elements displaced upwards or downwards in such an atmosphere expand or compress adiabatically in order to remain in pressure equilibrium with their surroundings, and in this manner become less or more dense.

If the adiabatic decrease or increase in density is less than the decrease or increase in the density of the ambient (not moved) medium, then the displaced fluid element will be subject to downwards or upwards pressure, which will function to restore it to its original position. Hence, there will be a counteracting force to the initial displacement. Such a condition is referred to as convective stability.

On the other hand, if adiabatic decrease or increase in density is greater than in the ambient fluid, the upwards or downwards displacement will be met with an additional force in the same direction exerted by the ambient fluid. In these circumstances, small deviations from the initial state will become amplified. This condition is referred to as convective instability . [4]

Convective instability is also termed static instability, because the instability does not depend on the existing motion of the air; this contrasts with dynamic instability where instability is dependent on the motion of air and its associated effects such as dynamic lifting.

Significance to thunderstorms

Thunderstorms form when air parcels are lifted vertically. Deep, moist convection requires a parcel to be lifted to the LFC where it then rises spontaneously until reaching a layer of non-positive buoyancy. The atmosphere is warm at the surface and lower levels of the troposphere where there is mixing (the planetary boundary layer (PBL)), but becomes substantially cooler with height. The temperature profile of the atmosphere, the change in temperature, the degree that it cools with height, is the lapse rate. When the rising air parcel cools more slowly than the surrounding atmosphere, it remains warmer and less dense. The parcel continues to rise freely (convectively; without mechanical lift) through the atmosphere until it reaches an area of air less dense (warmer) than itself.

The amount, and shape, of the positive-buoyancy area modulates the speed of updrafts, thus extreme CAPE can result in explosive thunderstorm development; such rapid development usually occurs when CAPE stored by a capping inversion is released when the "lid" is broken by heating or mechanical lift. The amount of CAPE also modulates how low-level vorticity is entrained and then stretched in the updraft, with importance to tornadogenesis. The most important CAPE for tornadoes is within the lowest 1 to 3 km (0.6 to 1.9 mi) of the atmosphere, whilst deep layer CAPE and the width of CAPE at mid-levels is important for supercells. Tornado outbreaks tend to occur within high CAPE environments. Large CAPE is required for the production of very large hail, owing to updraft strength, although a rotating updraft may be stronger with less CAPE. Large CAPE also promotes lightning activity. [5]

Two notable days for severe weather exhibited CAPE values over 5 kJ/kg. Two hours before the 1999 Oklahoma tornado outbreak occurred on May 3, 1999, the CAPE value sounding at Oklahoma City was at 5.89 kJ/kg. A few hours later, an F5 tornado ripped through the southern suburbs of the city. Also on May 4, 2007 CAPE values of 5.5 kJ/kg were reached and an EF5 tornado tore through Greensburg, Kansas. On these days, it was apparent that conditions were ripe for tornadoes and CAPE wasn't a crucial factor. However, extreme CAPE, by modulating the updraft (and downdraft), can allow for exceptional events, such as the deadly F5 tornadoes that hit Plainfield, Illinois on August 28, 1990 and Jarrell, Texas on May 27, 1997 on days which weren't readily apparent as conducive to large tornadoes. CAPE was estimated to exceed 8 kJ/kg in the environment of the Plainfield storm and was around 7 kJ/kg for the Jarrell storm.

Severe weather and tornadoes can develop in an area of low CAPE values. The surprise severe weather event that occurred in Illinois and Indiana on April 20, 2004 is a good example. Importantly in that case, was that although overall CAPE was weak, there was strong CAPE in the lowest levels of the troposphere which enabled an outbreak of minisupercells producing large, long-track, intense tornadoes. [6]

Example from meteorology

A good example of convective instability can be found in our own atmosphere. If dry mid-level air is drawn over very warm, moist air in the lower troposphere, a hydrolapse (an area of rapidly decreasing dew point temperatures with height) results in the region where the moist boundary layer and mid-level air meet. As daytime heating increases mixing within the moist boundary layer, some of the moist air will begin to interact with the dry mid-level air above it. Owing to thermodynamic processes, as the dry mid-level air is slowly saturated its temperature begins to drop, increasing the adiabatic lapse rate. Under certain conditions, the lapse rate can increase significantly in a short amount of time, resulting in convection. High convective instability can lead to severe thunderstorms and tornadoes as moist air which is trapped in the boundary layer eventually becomes highly negatively buoyant relative to the adiabatic lapse rate and escapes as a rapidly rising bubble of humid air triggering the development of a cumulus or cumulonimbus cloud.

Limitations

As with most parameters used in meteorology, there are some caveats to keep in mind. One of which is what CAPE represents physically and in what instances CAPE can be used. One example where the more common method for determining CAPE might start to break down is in the presence of Tropical Cyclones (e.x. Tropical Depressions, Tropical Storms, Hurricanes). [7] [8]

The more common method of determining CAPE can break down near Tropical Cyclones because CAPE assumes that liquid water is lost instantaneously during condensation. This process is thus irreversible upon adiabatic descent. This process is not realistic for Tropical Cyclones (TC for short). To make the process more realistic for Tropical Cyclones is to use Reversible CAPE (RCAPE for short). RCAPE assumes the opposite extreme to the standard convention of CAPE and is that no liquid water will be lost during the process. This new process gives parcels a greater density related to water loading.

RCAPE is calculated using the same formula as CAPE, the difference in the formula being in the virtual temperature. In this new formulation, we replace the parcel saturation mixing ratio (which leads to the condensation and vanishing of liquid water) with the parcel water content. This slight change can drastically change the values we get through the integration.

RCAPE does have some limitations, one of which is that RCAPE assumes no evaporation keeping consistent for the use within a TC but should be used sparingly elsewhere.

Another limitation of both CAPE and RCAPE is that currently, both systems do not consider entrainment.

See also

Related Research Articles

<span class="mw-page-title-main">Troposphere</span> Lowest layer of Earths atmosphere

The troposphere is the lowest layer of the atmosphere of Earth. It contains 75% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

<span class="mw-page-title-main">Cumulonimbus cloud</span> Genus of dense, towering vertical clouds

Cumulonimbus is a dense, towering vertical cloud, typically forming from water vapor condensing in the lower troposphere that builds upward carried by powerful buoyant air currents. Above the lower portions of the cumulonimbus the water vapor becomes ice crystals, such as snow and graupel, the interaction of which can lead to hail and to lightning formation, respectively. When occurring as a thunderstorm these clouds may be referred to as thunderheads. Cumulonimbus can form alone, in clusters, or along squall lines. These clouds are capable of producing lightning and other dangerous severe weather, such as tornadoes, hazardous winds, and large hailstones. Cumulonimbus progress from overdeveloped cumulus congestus clouds and may further develop as part of a supercell. Cumulonimbus is abbreviated Cb.

<span class="mw-page-title-main">Lapse rate</span> Vertical rate of change of temperature in atmosphere

The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. Lapse rate arises from the word lapse, in the sense of a gradual fall. In dry air, the adiabatic lapse rate is 9.8 °C/km. At Saturated Air Lapse Rate (SALR), where value is 1.1 °C/1000ft - 2.8 °C/1000ft as obtained from ICAO.

Equivalent potential temperature, commonly referred to as theta-e, is a quantity that is conserved during changes to an air parcel's pressure, even if water vapor condenses during that pressure change. It is therefore more conserved than the ordinary potential temperature, which remains constant only for unsaturated vertical motions.

<span class="mw-page-title-main">Cloud physics</span> Study of the physical processes in atmospheric clouds

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water, tiny crystals of ice, or both, along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

<span class="mw-page-title-main">Cyclogenesis</span> The development or strengthening of cyclonic circulation in the atmosphere

Cyclogenesis is the development or strengthening of cyclonic circulation in the atmosphere. Cyclogenesis is an umbrella term for at least three different processes, all of which result in the development of some sort of cyclone, and at any size from the microscale to the synoptic scale.

<span class="mw-page-title-main">Index of meteorology articles</span>

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

<span class="mw-page-title-main">Convective inhibition</span>

Convective inhibition is a numerical measure in meteorology that indicates the amount of energy that will prevent an air parcel from rising from the surface to the level of free convection.

<span class="mw-page-title-main">Convective instability</span> Ability of an air mass to resist vertical motion

In meteorology, convective instability or stability of an air mass refers to its ability to resist vertical motion. A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear. In an unstable atmosphere, vertical air movements tend to become larger, resulting in turbulent airflow and convective activity. Instability can lead to significant turbulence, extensive vertical clouds, and severe weather such as thunderstorms.

<span class="mw-page-title-main">Level of free convection</span>

The level of free convection (LFC) is the altitude in the atmosphere where an air parcel lifted adiabatically until saturation becomes warmer than the environment at the same level, so that positive buoyancy can initiate self-sustained convection.

<span class="mw-page-title-main">Lifted condensation level</span>

The lifted condensation level or lifting condensation level (LCL) is formally defined as the height at which the relative humidity (RH) of an air parcel will reach 100% with respect to liquid water when it is cooled by dry adiabatic lifting. The RH of air increases when it is cooled, since the amount of water vapor in the air remains constant, while the saturation vapor pressure decreases almost exponentially with decreasing temperature. If the air parcel is lifting further beyond the LCL, water vapor in the air parcel will begin condensing, forming cloud droplets. The LCL is a good approximation of the height of the cloud base which will be observed on days when air is lifted mechanically from the surface to the cloud base.

Atmospheric thermodynamics is the study of heat-to-work transformations that take place in the earth's atmosphere and manifest as weather or climate. Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and vertical instabilities in the atmosphere. Atmospheric thermodynamic diagrams are used as tools in the forecasting of storm development. Atmospheric thermodynamics forms a basis for cloud microphysics and convection parameterizations used in numerical weather models and is used in many climate considerations, including convective-equilibrium climate models.

<span class="mw-page-title-main">Lifted index</span>

The lifted index (LI) is the temperature difference between the environment Te(p) and an air parcel lifted adiabatically Tp(p) at a given pressure height in the troposphere of the atmosphere, usually 500 hPa (mb). The temperature is measured in Celsius. When the value is positive, the atmosphere is stable and when the value is negative, the atmosphere is unstable.

<span class="mw-page-title-main">Free convective layer</span>

In atmospheric sciences, the free convective layer (FCL) is the layer of conditional or potential instability in the troposphere. It is a layer in which rising air can experience positive buoyancy (PBE) so that deep, moist convection (DMC) can occur. On an atmospheric sounding, it is the layer between the level of free convection (LFC) and the equilibrium level (EL). The FCL is important to a variety of convective processes and to severe thunderstorm forecasting.

<span class="mw-page-title-main">Atmospheric convection</span> Atmospheric phenomenon

Atmospheric convection is the result of a parcel-environment instability in the atmosphere. Different lapse rates within dry and moist air masses lead to instability. Mixing of air during the day expands the height of the planetary boundary layer, leading to increased winds, cumulus cloud development, and decreased surface dew points. Convection involving moist air masses leads to thunderstorm development, which is often responsible for severe weather throughout the world. Special threats from thunderstorms include hail, downbursts, and tornadoes.

The maximum parcel level (MPL) is the highest level in the atmosphere that a moist convectively rising air parcel will reach after ascending from the level of free convection (LFC) through the free convective layer (FCL) and reaching the equilibrium level (EL), near the tropopause. As the parcel rises through the FCL it expands adiabatically causing its temperature to drop, often below the temperature of its surroundings, and eventually lose buoyancy. Because of this, the EL is approximately the region where the distinct flat tops, often observed around the upper portions of cumulonimbus clouds. If the air parcel ascended quickly enough then it retains momentum after it has cooled and continues rising past the EL, ceasing at the MPL.

<span class="mw-page-title-main">Atmospheric instability</span> Condition where the Earths atmosphere is generally considered to be unstable

Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. Atmospheric stability is a measure of the atmosphere's tendency to discourage vertical motion, and vertical motion is directly correlated to different types of weather systems and their severity. In unstable conditions, a lifted thing, such as a parcel of air will be warmer than the surrounding air. Because it is warmer, it is less dense and is prone to further ascent.

The following is a glossary of tornado terms. It includes scientific as well as selected informal terminology.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

<span class="mw-page-title-main">Shower (precipitation)</span> Sudden and brief rain or snowfall

A shower is a mode of precipitation characterized by an abrupt start and end and by rapid variations in intensity. Often strong and short-lived, it comes from convective clouds, like cumulus congestus. A shower will produce rain if the temperature is above the freezing point in the cloud, or snow / ice pellets / snow pellets / hail if the temperature is below it at some point. In a meteorological observation, such as the METAR, they are noted SH giving respectively SHRA, SHSN, SHPL, SHGS and SHGR.

References

  1. M. W. Moncrieff, M.J. Miller (1976). "The dynamics and simulation of tropical cumulonimbus and squall lines". Q. J. R. Meteorol. Soc. 120 (432): 373–94. Bibcode:1976QJRMS.102..373M. doi:10.1002/qj.49710243208.
  2. Charles A. Doswell III, E.N. Rasmussen (December 1994). "The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations". Weather and Forecasting. 9 (4): 625–9. Bibcode:1994WtFor...9..625D. doi: 10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2 .
  3. Thompson, Rich (2006). "Explanation of SPC Severe Weather Parameters". Storm Prediction Center . Retrieved 2007-05-30.
  4. Shu, Frank (1992). The Physics of Astrophysics, volume II: Gas dynamics. Bibcode:1992pavi.book.....S. ISBN   978-0-935702-65-1.
  5. Craven, Jeffrey P.; H.E. Brooks (December 2004). "Baseline climatology of sounding derived parameters associated with deep moist convection" (PDF). National Weather Digest . 28: 13–24.
  6. Pietrycha, Albert E.; J.M. Davies; M. Ratzer; P. Merzlock (October 2004). "Tornadoes in a Deceptively Small CAPE Environment: The 4/20/04 Outbreak in Illinois and Indiana". Preprints of the 22nd Conference on Severe Local Storms. Hyannis, Massachusetts: American Meteorological Society.
  7. Edwards, Roger; Thompson, Richard (November 2014). Reversible CAPE in Tropical Cyclone Tornado Regimes. 27th AMS Severe Local Storms Conference. Madison, WI: American Meteorological Society. doi:10.13140/2.1.2530.5921.
  8. Roger Edwards (July 7, 2017). Tropical Cyclone Tornadoes: Dual-Pol Radar Applications and Reversible CAPE (YouTube Video). NOAA . Retrieved December 27, 2021.

Further reading