Haines Index

Last updated

Haines Index (also known as the Lower Atmosphere Severity Index) is a weather index developed by meteorologist Donald Haines in 1988 that measures the potential for dry, unstable air to contribute to the development of large or erratic wildland fires. [1] The index is derived from the stability (temperature difference between different levels of the atmosphere) and moisture content (dew point depression) of the lower atmosphere. These data may be acquired with a radiosonde or simulated by a numerical weather prediction model. The index is calculated over three ranges of atmospheric pressure: low elevation (950-850 millibars (mb)), mid elevation (850-700 mb), and high elevation (700-500 mb). [2]

A Haines Index of 6 means a high potential for an existing fire to become large or exhibit erratic fire behavior, 5 means medium potential, 4 means low potential, and anything less than 4 means very low potential. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Lake-effect snow</span> Weather phenomenon

Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water. The lower layer of air, heated by the lake water, picks up water vapor from the lake and rises through colder air. The vapor then freezes and is deposited on the leeward (downwind) shores.

Atmospheric pressure, also known as air pressure or barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

<span class="mw-page-title-main">Wildfire</span> Uncontrolled fires in rural countryside or wilderness areas

A wildfire, forest fire, or a bushfire is an unplanned, uncontrolled and unpredictable fire in an area of combustible vegetation. Depending on the type of vegetation present, a wildfire may be more specifically identified as a bushfire, desert fire, grass fire, hill fire, peat fire, prairie fire, vegetation fire, or veld fire. Some natural forest ecosystems depend on wildfire. Wildfires are different from controlled or prescribed burning, which are carried out to provide a benefit for people. Modern forest management often engages in prescribed burns to mitigate fire risk and promote natural forest cycles. However, controlled burns can turn into wildfires by mistake.

Geopotential height or geopotential altitude is a vertical coordinate referenced to Earth's mean sea level that represents the work involved in lifting one unit of mass over one unit of length through a hypothetical space in which the acceleration of gravity is assumed constant. In SI units, a geopotential height difference of one meter implies the vertical transport of a parcel of one kilogram; adopting the standard gravity value, it corresponds to a constant work or potential energy difference of 9.80665 joules.

<span class="mw-page-title-main">Atmosphere of Earth</span> Gas layer surrounding Earth

The atmosphere of Earth is the planetary atmosphere of Earth, composed of a layer of gas mixture that surrounds the Earth's planetary surface, known collectively as air, with variable quantities of suspended aerosols and particulates, all retained by Earth's gravity. The atmosphere serves as a protective buffer between the Earth's surface and outer space, shields the surface from most meteoroids and ultraviolet solar radiation, keeps it warm and reduces diurnal temperature variation through heat retention, redistributes heat and moisture among different regions via air currents, and provides the chemical and climate conditions allowing life to exist and evolve on Earth.

<span class="mw-page-title-main">Moderate Resolution Imaging Spectroradiometer</span> Payload imaging sensor

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a satellite-based sensor used for earth and climate measurements. There are two MODIS sensors in Earth orbit: one on board the Terra satellite, launched by NASA in 1999; and one on board the Aqua satellite, launched in 2002. MODIS has now been replaced by the VIIRS, which first launched in 2011 aboard the Suomi NPP satellite.

<span class="mw-page-title-main">Numerical weather prediction</span> Weather prediction using mathematical models of the atmosphere and oceans

Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.

This glossary of wildfire terms is a list of definitions of terms and concepts relevant to wildfires and wildland firefighting. Except where noted, terms have largely been sourced from a 1998 Fireline Handbook transcribed for a Conflict 21 counter-terrorism studies website by the Air National Guard.

The Forest fire weather index (FWI) is an estimation of the risk of wildfire computed by Météo France and the Meteorological Service of Canada. It was introduced in France in 1992 but is based on a Canadian empirical model developed and widely used since 1976.

<span class="mw-page-title-main">Mountain pine beetle</span> Species of beetle

The mountain pine beetle is a species of bark beetle native to the forests of western North America from Mexico to central British Columbia. It has a hard black exoskeleton, and measures approximately 5 millimetres, about the size of a grain of rice.

<span class="mw-page-title-main">Wildfire suppression</span> Firefighting tactics used to suppress wildfires

Wildfire suppression is a range of firefighting tactics used to suppress wildfires. Firefighting efforts depend on many factors such as the available fuel, the local atmospheric conditions, the features of the terrain, and the size of the wildfire. Because of this wildfire suppression in wild land areas usually requires different techniques, equipment, and training from the more familiar structure fire fighting found in populated areas. Working in conjunction with specially designed aerial firefighting aircraft, fire engines, tools, firefighting foams, fire retardants, and using various firefighting techniques, wildfire-trained crews work to suppress flames, construct fire lines, and extinguish flames and areas of heat in order to protect resources and natural wilderness. Wildfire suppression also addresses the issues of the wildland–urban interface, where populated areas border with wild land areas.

National Fire Danger Rating System (NFDRS) is used in the United States to provide a measure of the relative seriousness of burning conditions and threat of wildfires.

<span class="mw-page-title-main">Atmospheric instability</span> Condition where the Earths atmosphere is generally considered to be unstable

Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. Atmospheric stability is a measure of the atmosphere's tendency to discourage vertical motion, and vertical motion is directly correlated to different types of weather systems and their severity. In unstable conditions, a lifted thing, such as a parcel of air will be warmer than the surrounding air. Because it is warmer, it is less dense and is prone to further ascent.

<span class="mw-page-title-main">Dry thunderstorm</span> Thunderstorm where little to no precipitation reaches the ground

A dry thunderstorm is a thunderstorm that produces thunder and lightning, but where most of its precipitation evaporates before reaching the ground. Dry lightning refers to lightning strikes occurring in this situation. Both are so common in the American West that they are sometimes used interchangeably.

<span class="mw-page-title-main">Wildfire modeling</span>

Wildfire modeling is concerned with numerical simulation of wildfires to comprehend and predict fire behavior. Wildfire modeling aims to aid wildfire suppression, increase the safety of firefighters and the public, and minimize damage. Wildfire modeling can also aid in protecting ecosystems, watersheds, and air quality.

The wildland–urban interface (WUI) is a zone of transition between wilderness and land developed by human activity – an area where a built environment meets or intermingles with a natural environment. Human settlements in the WUI are at a greater risk of catastrophic wildfire.

<span class="mw-page-title-main">K-index (meteorology)</span> Measurement related to thunderstorms

The K-Index or George's Index is a measure of thunderstorm potential in meteorology. According to the National Weather Service, the index harnesses measurements such as "vertical temperature lapse rate, moisture content of the lower atmosphere, and the vertical extent of the moist layer." It was developed by the American meteorologist Joseph J. George, and published in the 1960 book Weather Forecasting for Aeronautics.

<span class="mw-page-title-main">Wildfires in the United States</span> Wildfires that occur in the United States

Wildfires can happen in many places in the United States, especially during droughts, but are most common in the Western United States and Florida. They may be triggered naturally, most commonly by lightning, or by human activity like unextinguished smoking materials, faulty electrical equipment, overheating automobiles, or arson.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

Janice Coen is a Project Scientist at the National Center for Atmospheric Research in Boulder, Colorado. Her work focuses on understanding and predicting wildland fire behavior through the use of wildfire modeling software. She has made major contributions to the field through her coupled weather—wildland fire computer simulation models.

References

  1. "Haines Index". USA Forest Service. Archived from the original on April 16, 2014. Retrieved 16 April 2014.
  2. Noaa
  3. Winkler, Julie A.; Potter, Brian E.; Wilhelm, Dwight F.; Shadbolt, Ryan P.; Piromsopa, Krerk; Bian, Xindi (2007). "Climatological and statistical characteristics of the Haines Index for North America". International Journal of Wildland Fire. 16 (2): 139–152. CiteSeerX   10.1.1.486.1768 . doi:10.1071/WF06086.
  4. "Haines index definition". Archived from the original on 2024-01-25. Retrieved 2018-05-20.

See also