Subsidence

Last updated
Subsided house, called The Crooked House, the result of 19th-century mining subsidence in Staffordshire, England The Crooked House.jpg
Subsided house, called The Crooked House, the result of 19th-century mining subsidence in Staffordshire, England
Mam Tor road destroyed by subsidence and shear, near Castleton, Derbyshire SubsidedRoad.jpg
Mam Tor road destroyed by subsidence and shear, near Castleton, Derbyshire

Subsidence is a general term for downward vertical movement of the Earth's surface, which can be caused by both natural processes and human activities. Subsidence involves little or no horizontal movement, [1] [2] which distinguishes it from slope movement. [3]

Contents

Processes that lead to subsidence include dissolution of underlying carbonate rock by groundwater; gradual compaction of sediments; withdrawal of fluid lava from beneath a solidified crust of rock; mining; pumping of subsurface fluids, such as groundwater or petroleum; or warping of the Earth's crust by tectonic forces. Subsidence resulting from tectonic deformation of the crust is known as tectonic subsidence [1] and can create accommodation for sediments to accumulate and eventually lithify into sedimentary rock. [2]

Ground subsidence is of global concern to geologists, geotechnical engineers, surveyors, engineers, urban planners, landowners, and the public in general. [4] Pumping of groundwater or petroleum has led to subsidence of as much as 9 meters (30 ft) in many locations around the world and incurring costs measured in hundreds of millions of US dollars. [5] Land subsidence caused by groundwater withdrawal will likely increase in occurrence and related damages, primarily due to global population and economic growth, which will continue to drive higher groundwater demand. [6]

Causes

Dissolution of limestone

Subsidence frequently causes major problems in karst terrains, where dissolution of limestone by fluid flow in the subsurface creates voids (i.e., caves). If the roof of a void becomes too weak, it can collapse and the overlying rock and earth will fall into the space, causing subsidence at the surface. This type of subsidence can cause sinkholes which can be many hundreds of meters deep. [7]

Mining

Several types of sub-surface mining, and specifically methods which intentionally cause the extracted void to collapse (such as pillar extraction, longwall mining and any metalliferous mining method which uses "caving" such as "block caving" or "sub-level caving") will result in surface subsidence. Mining-induced subsidence is relatively predictable in its magnitude, manifestation and extent, except where a sudden pillar or near-surface tunnel collapse occurs (usually very old workings [8] ). Mining-induced subsidence is nearly always very localized to the surface above the mined area, plus a margin around the outside. [9] The vertical magnitude of the subsidence itself typically does not cause problems, except in the case of drainage (including natural drainage)–rather, it is the associated surface compressive and tensile strains, curvature, tilts and horizontal displacement that are the cause of the worst damage to the natural environment, buildings and infrastructure. [10]

Where mining activity is planned, mining-induced subsidence can be successfully managed if there is co-operation from all of the stakeholders. This is accomplished through a combination of careful mine planning, the taking of preventive measures, and the carrying out of repairs post-mining. [11]

Stabilizing damaged homes above underground mine in Bradenville PA USA Abandoned coal mine subsidence stablization project.jpg
Stabilizing damaged homes above underground mine in Bradenville PA USA
Types of ground subsidence Wiki Image Rev1.svg
Types of ground subsidence

Extraction of petroleum and natural gas

If natural gas is extracted from a natural gas field the initial pressure (up to 60 MPa (600 bar)) in the field will drop over the years. The pressure helps support the soil layers above the field. If the gas is extracted, the overburden pressure sediment compacts and may lead to earthquakes and subsidence at the ground level.

Since exploitation of the Slochteren (Netherlands) gas field started in the late 1960s the ground level over a 250 km2 area has dropped by a current maximum of 30 cm. [12]

Extraction of petroleum likewise can cause significant subsidence. The city of Long Beach, California, has experienced 9 meters (30 ft) over the course of 34 years of petroleum extraction, resulting in damage of over $100 million to infrastructure in the area. The subsidence was brought to a halt when secondary recovery wells pumped enough water into the oil reservoir to stabilize it. [5]

Earthquake

Land subsidence can occur in various ways during an earthquake. Large areas of land can subside drastically during an earthquake because of offset along fault lines. Land subsidence can also occur as a result of settling and compacting of unconsolidated sediment from the shaking of an earthquake. [13]

The Geospatial Information Authority of Japan reported immediate subsidence caused by the 2011 Tōhoku earthquake. [14] In Northern Japan, subsidence of 0.50 m (1.64 ft) was observed on the coast of the Pacific Ocean in Miyako, Tōhoku, while Rikuzentakata, Iwate measured 0.84 m (2.75 ft). In the south at Sōma, Fukushima, 0.29 m (0.95 ft) was observed. The maximum amount of subsidence was 1.2 m (3.93 ft), coupled with horizontal diastrophism of up to 5.3 m (17.3 ft) on the Oshika Peninsula in Miyagi Prefecture. [15]

San Joaquin Valley subsidence Gwsanjoaquin.jpg
San Joaquin Valley subsidence

Groundwater-related subsidence is the subsidence (or the sinking) of land resulting from groundwater extraction. It is a growing problem in the developing world as cities increase in population and water use, without adequate pumping regulation and enforcement. One estimate has 80% of serious land subsidence problems associated with the excessive extraction of groundwater, [16] making it a growing problem throughout the world. [17]

Groundwater fluctuations can also indirectly affect the decay of organic material. The habitation of lowlands, such as coastal or delta plains, requires drainage. The resulting aeration of the soil leads to the oxidation of its organic components, such as peat, and this decomposition process may cause significant land subsidence. This applies especially when groundwater levels are periodically adapted to subsidence, in order to maintain desired unsaturated zone depths, exposing more and more peat to oxygen. In addition to this, drained soils consolidate as a result of increased effective stress. [18] [19] In this way, land subsidence has the potential of becoming self-perpetuating, having rates up to 5 cm/yr. Water management used to be tuned primarily to factors such as crop optimization but, to varying extents, avoiding subsidence has come to be taken into account as well.

Faulting induced

When differential stresses exist in the Earth, these can be accommodated either by geological faulting in the brittle crust, or by ductile flow in the hotter and more fluid mantle. Where faults occur, absolute subsidence may occur in the hanging wall of normal faults. In reverse, or thrust, faults, relative subsidence may be measured in the footwall. [20]

Isostatic subsidence

The crust floats buoyantly in the asthenosphere, with a ratio of mass below the "surface" in proportion to its own density and the density of the asthenosphere. If mass is added to a local area of the crust (e.g., through deposition), the crust subsides to compensate and maintain isostatic balance. [2]

The opposite of isostatic subsidence is known as isostatic rebound—the action of the crust returning (sometimes over periods of thousands of years) to a state of isostacy, such as after the melting of large ice sheets or the drying-up of large lakes after the last ice age. Lake Bonneville is a famous example of isostatic rebound. Due to the weight of the water once held in the lake, the earth's crust subsided nearly 200 feet (61 m) to maintain equilibrium. When the lake dried up, the crust rebounded. Today at Lake Bonneville, the center of the former lake is about 200 feet (61 m) higher than the former lake edges. [21]

Seasonal effects

Many soils contain significant proportions of clay. Because of the very small particle size, they are affected by changes in soil moisture content. Seasonal drying of the soil results in a lowering of both the volume and the surface of the soil. If building foundations are above the level reached by seasonal drying, they move, possibly resulting in damage to the building in the form of tapering cracks.

Trees and other vegetation can have a significant local effect on seasonal drying of soils. Over a number of years, a cumulative drying occurs as the tree grows. That can lead to the opposite of subsidence, known as heave or swelling of the soil, when the tree declines or is felled. As the cumulative moisture deficit is reversed, which can last up to 25 years, the surface level around the tree will rise and expand laterally. That often damages buildings unless the foundations have been strengthened or designed to cope with the effect. [22]

Weight of buildings

High buildings can create land subsidence by pressing the soil beneath with their weight. The problem is already felt in New York City, San Francisco Bay Area, Lagos. [23] [24]

Impacts

Increase of flooding potential

Land subsidence leads to the lowering of the ground surface, altering the topography. This elevation reduction increases the risk of flooding, particularly in river flood plains [25] and delta areas. [26]

Sinking cities

Drivers, processes, and impacts of sinking cities Drivers, Processes, and Impacts of Sinking Cities.png
Drivers, processes, and impacts of sinking cities
Sinking cities are urban environments that are in danger of disappearing due to their rapidly changing landscapes. The largest contributors to these cities becoming unlivable are the combined effects of climate change (manifested through sea level rise, intensifying storms, and storm surge), land subsidence, and accelerated urbanization. [28] Many of the world's largest and most rapidly growing cities are located along rivers and coasts, exposing them to natural disasters. As countries continue to invest people, assets, and infrastructure into these cities, the loss potential in these areas also increases. [29] Sinking cities must overcome substantial barriers to properly prepare for today's dynamic environmental climate.

Earth fissures

Earth fissures are linear fractures that appear on the land surface, characterized by openings or offsets. These fissures can be several meters deep, several meters wide, and extend for several kilometers. They form when the deformation of an aquifer, caused by pumping, concentrates stress in the sediment. [30] This inhomogeneous deformation results in the differential compaction of the sediments. Ground fissures develop when this tensile stress exceeds the tensile strength of the sediment.

Infrastructure damage

Land subsidence can lead to differential settlements in buildings and other infrastructures, causing angular distortions. When these angular distortions exceed certain values, the structures can become damaged, resulting in issues such as tilting or cracking. [31] [32] [33]

Field measurement of subsidence

Land subsidence causes vertical displacements (subsidence or uplift). Although horizontal displacements also occur, they are generally less significant. The following are field methods used to measure vertical and horizontal displacements in subsiding areas:

Tomás et al. [45] conducted a comparative analysis of various land subsidence monitoring techniques. The results indicated that InSAR offered the highest coverage, lowest annual cost per point of information and the highest point density. Additionally, they found that, aside from continuous acquisition systems typically installed in areas with rapid subsidence, InSAR had the highest measurement frequencies. In contrast, leveling, non-permanent GNSS, and non-permanent extensometers generally provided only one or two measurements per year. [45]

Land Subsidence Prediction

Empirical Methods

These methods project future land subsidence trends by extrapolating from existing data, treating subsidence as a function solely of time. [34] The extrapolation can be performed either visually or by fitting appropriate curves. Common functions used for fitting include linear, bilinear, quadratic, and/or exponential models. For example, this method has been successfully applied for predicting mining-induced subsidence. [46]

Semi-Empirical or Statistical Methods

These approaches evaluate land subsidence based on its relationship with one or more influencing factors, [34] [47] such as changes in groundwater levels, the volume of groundwater extraction, and clay content.

Theoretical Methods

1D Model

This model assumes that changes in piezometric levels affecting aquifers and aquitards occur only in the vertical direction. [47] It allows for subsidence calculations at a specific point using only vertical soil parameters. [48] [49]

Quasi-3D Model

Quasi-three-dimensional seepage models apply Terzaghi's one-dimensional consolidation equation to estimate subsidence, integrating some aspects of three-dimensional effects. [47] [50]

3D Model

The fully coupled three-dimensional model simulates water flow in three dimensions and calculates subsidence using Biot's three-dimensional consolidation theory. [47] [51] [52]

Machine learning

Machine learning has become a new approach for tackling nonlinear problems. It has emerged as a promising method for simulating and predicting land subsidence. [53] [54]

Examples

LocationDepositional environmentMaximum subsidence rate (mm/year) and periodCauseImpactsRemedial or protective measurementsReferences
Bangkok, ThailandFluvial and marine deposits from the Holocene<120 (1981)Groundwater extractionIntensification of city flooding, shoreline regression, intrusion of salt water and foundation engineering problems.Groundwater pricing policies, the expansion of tap water supply from surface sources in underserved industrial suburban areas and strict implementation of the groundwater usage ban [55]
Beijing, ChinaAlluvial sediments>100 (2010-2011)Groundwater extractionThe South-to-North Water Diversion Project Central Route (SNWDP-CR) was built to redistribute water resources. [56] [57] [58] [59]
Datong coal field, ChinaJurassic and Carboniferous coal seams17 (2003-2010)

<1146 (2022-2023)

Groundwater overpumping from mines and coal mining subsidence.Soil avalanche, landslide, mud-rock flow, surface settlement, earth fissures and surface gangue stack.. [60] [61] [62]
Guadalentín, SpainAlluvial and fluvial sediments>110 (1992-2012)Groundwater extractionIncrease of flooding potential [63] [64] [42]
Gediz River Basin, TürkiyeGraben filled with approximately 500 m of Pliocene and Quaternary alluvial material.64.0 (2017-2021)Groundwater extraction and tectonicsSeveral earth fissures and damage on buildings [65]
Jakarta, IndonesiaAlluvial sediments260 (1991-1997)

100 (1997-2002)

Groundwater extractionCracking of permanent structures, expanded flooding areas, lowered groundwater levels, and increased inland seawater intrusion. [66] [67] [68]
Karapınar, TurkeyMiocene–Pliocene conglomerate, sandstone, marl, limestone, tuff, and evaporitesDissolution [69]
La Unión, SpainSandstones,conglomerates, phyllites and limestones7 (2003-2004)Underground mining activitiesCollapse of one building and damage on surrounding buildingsProhibition of construction in the urban area affected by subsidence. [70] [71]
México city, MexicoAlluvial and lacustrine sediments387 (2014-2020)Groundwater extractionDevelopment of earth fissures. Damage on buildings. [72] [73]
Murcia, SpainAlluvial and fluvial sediments26 (2004-2008)Groundwater extractionDamage on 150 buildingsClosure of urban wells [74] [75] [76]
Patos-Marinza oil field, AlbaniaCarbonates and siliciclastic deposits15 (2015-2018)Extraction of petroleum [77]
San Joaquin Valley, California, USAAlluvial and lacustrine sediments.500 (1923-1970)

80 (1921-1960)

Groundwater extractionImportation of surface water to agricultural areas in the San Joaquin Valley, California, via the California Aqueduct from the late 1960s. [78] [79] [34]
Sanghai, ChinaMarine sediments87 (2019-2020)Groundwater extractionThe economic loss caused by ground subsidence in Shanghai from 2001 to 2020 amounted to over 24.57 billion yuan.Restriction of groundwater use, artificial recharge with treated river water, and adjustment of pumping patterns [80] [81]
Tehran, IranAlluvial sediments217 (2017-2019)Groundwater extraction [41] [82] [83]
Venice, ItalyDeltaic and lagoon deposits1 (before 1952)

6.5 (1952-1968) 4 (2003-2010)

Groundwater extractionDecrease of groundwater extraction. Some areas were supplied from water from inland. [84] [34]

See also

Related Research Articles

<span class="mw-page-title-main">Landslide</span> Natural hazard involving ground movement

Landslides, also known as landslips, or rockslides, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls, mudflows, shallow or deep-seated slope failures and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides.

<span class="mw-page-title-main">Building</span> Structure, typically with a roof and walls, standing more or less permanently in one place

A building or edifice is an enclosed structure with a roof and walls, usually standing permanently in one place, such as a house or factory. Buildings come in a variety of sizes, shapes, and functions, and have been adapted throughout history for numerous factors, from building materials available, to weather conditions, land prices, ground conditions, specific uses, prestige, and aesthetic reasons. To better understand the concept, see Nonbuilding structure for contrast.

<span class="mw-page-title-main">Environmental geology</span> Science of the practical application of geology in environmental problems.

Environmental geology, like hydrogeology, is an applied science concerned with the practical application of the principles of geology in the solving of environmental problems created by man. It is a multidisciplinary field that is closely related to engineering geology and, to a lesser extent, to environmental geography. Each of these fields involves the study of the interaction of humans with the geologic environment, including the biosphere, the lithosphere, the hydrosphere, and to some extent the atmosphere. In other words, environmental geology is the application of geological information to solve conflicts, minimizing possible adverse environmental degradation, or maximizing possible advantageous conditions resulting from the use of natural and modified environment. With an increasing world population and industrialization, the natural environment and resources are under high strain which puts them at the forefront of world issues. Environmental geology is on the rise with these issues as solutions are found by utilizing it.

<span class="mw-page-title-main">Geomicrobiology</span> Intersection of microbiology and geology

Geomicrobiology is the scientific field at the intersection of geology and microbiology and is a major subfield of geobiology. It concerns the role of microbes on geological and geochemical processes and effects of minerals and metals to microbial growth, activity and survival. Such interactions occur in the geosphere, the atmosphere and the hydrosphere. Geomicrobiology studies microorganisms that are driving the Earth's biogeochemical cycles, mediating mineral precipitation and dissolution, and sorbing and concentrating metals. The applications include for example bioremediation, mining, climate change mitigation and public drinking water supplies.

<span class="mw-page-title-main">Groundwater</span> Water located beneath the ground surface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available fresh water in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

<span class="mw-page-title-main">Continuous wavelet transform</span> Integral transform

In mathematics, the continuous wavelet transform (CWT) is a formal tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously.

<span class="mw-page-title-main">Geological hazard</span> Geological state that may lead to widespread damage or risk

A geologic hazard or geohazard is an adverse geologic condition capable of causing widespread damage or loss of property and life. These hazards are geological and environmental conditions and involve long-term or short-term geological processes. Geohazards can be relatively small features, but they can also attain huge dimensions and affect local and regional socio-economics to a large extent.

In the field of hydrogeology, storage properties are physical properties that characterize the capacity of an aquifer to release groundwater. These properties are storativity (S), specific storage (Ss) and specific yield (Sy). According to Groundwater, by Freeze and Cherry (1979), specific storage, [m−1], of a saturated aquifer is defined as the volume of water that a unit volume of the aquifer releases from storage under a unit decline in hydraulic head.

Earth observation (EO) is the gathering of information about the physical, chemical, and biological systems of the planet Earth. It can be performed via remote-sensing technologies or through direct-contact sensors in ground-based or airborne platforms.

<span class="mw-page-title-main">Interferometric synthetic-aperture radar</span> Geodesy and remote sensing technique

Interferometric synthetic aperture radar, abbreviated InSAR, is a radar technique used in geodesy and remote sensing. This geodetic method uses two or more synthetic aperture radar (SAR) images to generate maps of surface deformation or digital elevation, using differences in the phase of the waves returning to the satellite or aircraft. The technique can potentially measure millimetre-scale changes in deformation over spans of days to years. It has applications for geophysical monitoring of natural hazards, for example earthquakes, volcanoes and landslides, and in structural engineering, in particular monitoring of subsidence and structural stability.

<span class="mw-page-title-main">Overdrafting</span> Unsustainable extraction of groundwater

Overdrafting is the process of extracting groundwater beyond the equilibrium yield of an aquifer. Groundwater is one of the largest sources of fresh water and is found underground. The primary cause of groundwater depletion is the excessive pumping of groundwater up from underground aquifers. Insufficient recharge can lead to depletion, reducing the usefulness of the aquifer for humans. Depletion can also have impacts on the environment around the aquifer, such as soil compression and land subsidence, local climatic change, soil chemistry changes, and other deterioration of the local environment.

Slope mass rating (SMR) is a rock mass classification scheme developed by Manuel Romana to describe the strength of an individual rock outcrop or slope. The system is founded upon the more widely used RMR scheme, which is modified with quantitative guidelines to the rate the influence of adverse joint orientations.

<span class="mw-page-title-main">Deformation monitoring</span>

Deformation monitoring is the systematic measurement and tracking of the alteration in the shape or dimensions of an object as a result of stresses induced by applied loads. Deformation monitoring is a major component of logging measured values that may be used for further computation, deformation analysis, predictive maintenance, and alarming.

Tectonic subsidence is the sinking of the Earth's crust on a large scale, relative to crustal-scale features or the geoid. The movement of crustal plates and accommodation spaces produced by faulting brought about subsidence on a large scale in a variety of environments, including passive margins, aulacogens, fore-arc basins, foreland basins, intercontinental basins and pull-apart basins. Three mechanisms are common in the tectonic environments in which subsidence occurs: extension, cooling and loading.

<span class="mw-page-title-main">Land</span> Earths dry surface

Land, also known as dry land, ground, or earth, is the solid terrestrial surface of Earth not submerged by the ocean or another body of water. It makes up 29.2% of Earth's surface and includes all continents and islands. Earth's land surface is almost entirely covered by regolith, a layer of rock, soil, and minerals that forms the outer part of the crust. Land plays an important role in Earth's climate system, being involved in the carbon cycle, nitrogen cycle, and water cycle. One-third of land is covered in trees, another third is used for agriculture, and one-tenth is covered in permanent snow and glaciers. The remainder consists of desert, savannah, and prairie.

<span class="mw-page-title-main">Remote sensing in geology</span> Data acquisition method for earth sciences

Remote sensing is used in the geological sciences as a data acquisition method complementary to field observation, because it allows mapping of geological characteristics of regions without physical contact with the areas being explored. About one-fourth of the Earth's total surface area is exposed land where information is ready to be extracted from detailed earth observation via remote sensing. Remote sensing is conducted via detection of electromagnetic radiation by sensors. The radiation can be naturally sourced, or produced by machines and reflected off of the Earth surface. The electromagnetic radiation acts as an information carrier for two main variables. First, the intensities of reflectance at different wavelengths are detected, and plotted on a spectral reflectance curve. This spectral fingerprint is governed by the physio-chemical properties of the surface of the target object and therefore helps mineral identification and hence geological mapping, for example by hyperspectral imaging. Second, the two-way travel time of radiation from and back to the sensor can calculate the distance in active remote sensing systems, for example, Interferometric synthetic-aperture radar. This helps geomorphological studies of ground motion, and thus can illuminate deformations associated with landslides, earthquakes, etc.

<span class="mw-page-title-main">Junggar Basin</span> Sedimentary basin in Xinjiang, China

The Junggar Basin, also known as the Dzungarian Basin or Zungarian Basin, is one of the largest sedimentary basins in Northwest China. It is located in Dzungaria in northern Xinjiang, and enclosed by the Tarbagatai Mountains of Kazakhstan in the northwest, the Altai Mountains of Mongolia in the northeast, and the Heavenly Mountains in the south. The geology of Junggar Basin mainly consists of sedimentary rocks underlain by igneous and metamorphic basement rocks. The basement of the basin was largely formed during the development of the Pangea supercontinent during complex tectonic events from Precambrian to late Paleozoic time. The basin developed as a series of foreland basins – in other words, basins developing immediately in front of growing mountain ranges – from Permian time to the Quaternary period. The basin's preserved sedimentary records show that the climate during the Mesozoic era was marked by a transition from humid to arid conditions as monsoonal climatic effects waned. The Junggar basin is rich in geological resources due to effects of volcanism and sedimentary deposition. According to Guinness World Records it is a land location remotest from open sea with great-circle distance of 2,648 km from the nearest open sea at 46°16′8″N86°40′2″E.

<span class="mw-page-title-main">Fissure</span> Long, narrow crack opening on a planetary surface

A fissure is a long, narrow crack opening along the surface of Earth. The term is derived from the Latin word fissura, which means 'cleft' or 'crack'. Fissures emerge in Earth's crust, on ice sheets and glaciers, and on volcanoes.

<span class="mw-page-title-main">Silicification</span> Geological petrification process

In geology, silicification is a petrification process in which silica-rich fluids seep into the voids of Earth materials, e.g., rocks, wood, bones, shells, and replace the original materials with silica (SiO2). Silica is a naturally existing and abundant compound found in organic and inorganic materials, including Earth's crust and mantle. There are a variety of silicification mechanisms. In silicification of wood, silica permeates into and occupies cracks and voids in wood such as vessels and cell walls. The original organic matter is retained throughout the process and will gradually decay through time. In the silicification of carbonates, silica replaces carbonates by the same volume. Replacement is accomplished through the dissolution of original rock minerals and the precipitation of silica. This leads to a removal of original materials out of the system. Depending on the structures and composition of the original rock, silica might replace only specific mineral components of the rock. Silicic acid (H4SiO4) in the silica-enriched fluids forms lenticular, nodular, fibrous, or aggregated quartz, opal, or chalcedony that grows within the rock. Silicification happens when rocks or organic materials are in contact with silica-rich surface water, buried under sediments and susceptible to groundwater flow, or buried under volcanic ashes. Silicification is often associated with hydrothermal processes. Temperature for silicification ranges in various conditions: in burial or surface water conditions, temperature for silicification can be around 25°−50°; whereas temperatures for siliceous fluid inclusions can be up to 150°−190°. Silicification could occur during a syn-depositional or a post-depositional stage, commonly along layers marking changes in sedimentation such as unconformities or bedding planes.

<span class="mw-page-title-main">Geology of the Pearl River Delta</span>

The geology of the Pearl River Delta is rock sequences plus superficial sediments, emplaced in an alluvial delta, occupying the Pearl River Estuary. The unconsolidated sediments which dominate the delta are largely derived from continental materials exposed across the Pearl River basin, and range in size from fine particles such as mud to larger fragments like gravel. These deltaic materials have been deposited for 9000 years atop the bedrock at the mouth of the Pearl River in Guangdong Province, situated along the northern margin of the South China Sea.

References

  1. 1 2 Jackson, Julia A., ed. (1997). "subsidence". Glossary of geology (Fourth ed.). Alexandria, Virginia: American Geological Institute. ISBN   0922152349.
  2. 1 2 3 Allaby, Michael (2013). "subsidence". A dictionary of geology and earth sciences (Fourth ed.). Oxford: Oxford University Press. ISBN   9780199653065.
  3. Fleming, Robert W.; Varnes, David J. (1991). "Slope movements". The Heritage of Engineering Geology; the First Hundred Years: 201–218. doi:10.1130/DNAG-CENT-v3.201. ISBN   0813753031.
  4. National Research Council, 1991. Mitigating losses from land subsidence in the United States. National Academies Press. 58 p.
  5. 1 2 Monroe, James S. (1992). Physical geology : exploring the Earth. St. Paul: West Pub. Co. pp. 502–503. ISBN   0314921958.
  6. Herrera-García, Gerardo; Ezquerro, Pablo; Tomás, Roberto; Béjar-Pizarro, Marta; López-Vinielles, Juan; Rossi, Mauro; Mateos, Rosa M.; Carreón-Freyre, Dora; Lambert, John; Teatini, Pietro; Cabral-Cano, Enrique; Erkens, Gilles; Galloway, Devin; Hung, Wei-Chia; Kakar, Najeebullah (January 2021). "Mapping the global threat of land subsidence". Science. 371 (6524): 34–36. Bibcode:2021Sci...371...34H. doi:10.1126/science.abb8549. hdl: 10045/111711 . ISSN   0036-8075. PMID   33384368.
  7. Waltham, T.; Bell, F.G.; Culshaw, M.G. (2005). Sinkholes and Subsidence. Karst and Cavernous Rocks in Engineering and Const. doi:10.1007/b138363. ISBN   978-3-540-20725-2.
  8. Herrera, G.; Tomás, R.; López-Sánchez, J.M.; Delgado, J.; Mallorquí, J.; Duque, S.; Mulas, J. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Engineering Geology, 90, 148-159, 2007.
  9. "Graduated Guidelines for Residential Construction (New South Wales) Volume 1" (PDF). Retrieved 2012-11-19.
  10. G. Herrera, M.I. Álvarez Fernández, R. Tomás, C. González-Nicieza, J. M. Lopez-Sanchez, A.E. Álvarez Vigil. Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III). Engineering Failure Analysis 24, 67-76, 2012.
  11. Bauer, R.A. (2008). "Planned coal mine subsidence in Illinois: a public information booklet" (PDF). Illinois State Geological Survey Circular. 573. Retrieved 10 December 2021.
  12. Subsidence lecture Archived 2004-10-30 at the Wayback Machine
  13. "Earthquake Induced Land Subsidence" . Retrieved 2018-06-25.
  14. 平成23年(2011年)東北地方太平洋沖地震に伴う地盤沈下調査 [Land subsidence caused by 2011 Tōhoku earthquake and tsunami] (in Japanese). Geospatial Information Authority of Japan. 2011-04-14. Retrieved 2011-04-17.
  15. Report date on 19 March 2011, Diastrophism in Oshika Peninsula on 2011 Tōhoku earthquake and tsunami, Diastrophism in vertical 2011-03-11 M9.0, Diastrophism in horizontal 2011-03-11 M9.0 Geospatial Information Authority of Japan
  16. USGS Fact Sheet-165-00 December 2000
  17. Herrera-García, Gerardo; Ezquerro, Pablo; Tomás, Roberto; Béjar-Pizarro, Marta; López-Vinielles, Juan; Rossi, Mauro; Mateos, Rosa M.; Carreón-Freyre, Dora; Lambert, John; Teatini, Pietro; Cabral-Cano, Enrique; Erkens, Gilles; Galloway, Devin; Hung, Wei-Chia; Kakar, Najeebullah (January 2021). "Mapping the global threat of land subsidence". Science. 371 (6524): 34–36. Bibcode:2021Sci...371...34H. doi:10.1126/science.abb8549. hdl: 10045/111711 . ISSN   0036-8075. PMID   33384368.
  18. 1 2 Tomás, R.; Márquez, Y.; Lopez-Sanchez, J.M.; Delgado, J.; Blanco, P.; Mallorquí, J.J.; Martínez, M.; Herrera, M.; Mulas, J. Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR interferometry: Vega Media of the Segura river (SE Spain) case study. Remote Sensing of Environment, 98, 269-283, 2005
  19. R. Tomás, G. Herrera, J.M. Lopez-Sanchez, F. Vicente, A. Cuenca, J.J. Mallorquí. Study of the land subsidence in the Orihuela city (SE Spain) using PSI data: distribution, evolution, and correlation with conditioning and triggering factors. Engineering Geology, 115, 105-121, 2010.
  20. Lee, E.Y., Novotny, J., Wagreich, M. (2019) Subsidence analysis and visualization: for sedimentary basin analysis and modelling, Springer. doi : 10.1007/978-3-319-76424-5
  21. Adams, K.D.; Bills, B.G. (2016). "Isostatic Rebound and Palinspastic Restoration of the Bonneville and Provo Shorelines in the Bonneville Basin, UT, NV, and ID". Developments in Earth Surface Processes. 20: 145–164. doi:10.1016/B978-0-444-63590-7.00008-1. ISBN   9780444635907.
  22. Page, R.C.J. (June 1998). "Reducing the cost of subsidence damage despite global warming". Structural Survey. 16 (2): 67–75. doi:10.1108/02630809810219641.
  23. Yirka, Bob. "New York City building weight contributing to subsidence drop of 1–2 millimeters per year". Phys.org. Earth's Future. Retrieved 22 January 2024.
  24. Novo, Cristina (2 March 2021). "The weight of buildings contributes to the sinking of cities". Smart Water Magazine. Retrieved 22 January 2024.
  25. Navarro-Hernández, María I.; Valdes-Abellan, Javier; Tomás, Roberto; Tessitore, Serena; Ezquerro, Pablo; Herrera, Gerardo (2023-09-01). "Analysing the Impact of Land Subsidence on the Flooding Risk: Evaluation Through InSAR and Modelling". Water Resources Management. 37 (11): 4363–4383. Bibcode:2023WatRM..37.4363N. doi: 10.1007/s11269-023-03561-6 . ISSN   1573-1650.
  26. Avornyo, Selasi Yao; Minderhoud, Philip S. J.; Teatini, Pietro; Seeger, Katharina; Hauser, Leon T.; Woillez, Marie-Noëlle; Jayson-Quashigah, Philip-Neri; Mahu, Edem; Kwame-Biney, Michael; Appeaning Addo, Kwasi (2024-06-01). "The contribution of coastal land subsidence to potential sea-level rise impact in data-sparse settings: The case of Ghana's Volta delta". Quaternary Science Advances. 14: 100175. Bibcode:2024QSAdv..1400175A. doi: 10.1016/j.qsa.2024.100175 . ISSN   2666-0334.
  27. Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J. (2015-11-12). "Sinking coastal cities". Proceedings of the International Association of Hydrological Sciences. 372. Copernicus GmbH: 189–198. Bibcode:2015PIAHS.372..189E. doi: 10.5194/piahs-372-189-2015 .
  28. Fuchs, Roland (July 2010). "Cities at Risk: Asia's Coastal Cities in an Age of Climate Change". Asia Pacific Issues. 96: 1–12.
  29. Sundermann, L., Schelske, O., & Hausmann, P. (2014). Mind the risk – A global ranking of cities under threat from natural disasters. Swiss Re.
  30. Burbey, Thomas (2002-10-01). "The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA". Hydrogeology Journal. 10 (5): 525–538. Bibcode:2002HydJ...10..525B. doi:10.1007/s10040-002-0215-7. ISSN   1431-2174.
  31. Bru, G.; Herrera, G.; Tomás, R.; Duro, J.; De la Vega, R.; Mulas, J. (2010-09-22). "Control of deformation of buildings affected by subsidence using persistent scatterer interferometry". Structure and Infrastructure Engineering: 1–13. doi:10.1080/15732479.2010.519710. ISSN   1573-2479.
  32. Tomás, Roberto; García-Barba, Javier; Cano, Miguel; Sanabria, Margarita P; Ivorra, Salvador; Duro, Javier; Herrera, Gerardo (November 2012). "Subsidence damage assessment of a Gothic church using differential interferometry and field data". Structural Health Monitoring. 11 (6): 751–762. doi:10.1177/1475921712451953. hdl: 10045/55037 . ISSN   1475-9217.
  33. Sanabria, M. P.; Guardiola-Albert, C.; Tomás, R.; Herrera, G.; Prieto, A.; Sánchez, H.; Tessitore, S. (2014-05-27). "Subsidence activity maps derived from DInSAR data: Orihuela case study". Natural Hazards and Earth System Sciences. 14 (5): 1341–1360. Bibcode:2014NHESS..14.1341S. doi: 10.5194/nhess-14-1341-2014 . hdl: 10045/46369 . ISSN   1561-8633.
  34. 1 2 3 4 5 6 Poland, J. F.; International Hydrological Programme, eds. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal. Studies and reports in hydrology. Paris: Unesco. ISBN   978-92-3-102213-5.
  35. Abidin, Hasanuddin Z.; Andreas, H.; Gamal, M.; Djaja, Rochman; Subarya, C.; Hirose, K.; Maruyama, Y.; Murdohardono, D.; Rajiyowiryono, H. (2005). Sansò, Fernando (ed.). "Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling, GPS Survey and InSAR Techniques". A Window on the Future of Geodesy. International Association of Geodesy Symposia. 128. Berlin, Heidelberg: Springer: 561–566. doi:10.1007/3-540-27432-4_95. ISBN   978-3-540-27432-2.
  36. 1 2 3 4 5 Fergason, K. C.; Rucker, M. L.; Panda, B. B. (2015-11-12). "Methods for monitoring land subsidence and earth fissures in the Western USA". Proceedings of the International Association of Hydrological Sciences. 372: 361–366. Bibcode:2015PIAHS.372..361F. doi: 10.5194/piahs-372-361-2015 . ISSN   2199-899X.
  37. Pardo, Juan Manuel; Lozano, Antonio; Herrera, Gerardo; Mulas, Joaquín; Rodríguez, Ángel (2013-11-01). "Instrumental monitoring of the subsidence due to groundwater withdrawal in the city of Murcia (Spain)". Environmental Earth Sciences. 70 (5): 1957–1963. Bibcode:2013EES....70.1957P. doi:10.1007/s12665-013-2710-7. ISSN   1866-6299.
  38. Susilo, Susilo; Salman, Rino; Hermawan, Wawan; Widyaningrum, Risna; Wibowo, Sidik Tri; Lumban-Gaol, Yustisi Ardhitasari; Meilano, Irwan; Yun, Sang-Ho (2023-07-01). "GNSS land subsidence observations along the northern coastline of Java, Indonesia". Scientific Data. 10 (1): 421. Bibcode:2023NatSD..10..421S. doi:10.1038/s41597-023-02274-0. ISSN   2052-4463. PMC   10314896 . PMID   37393372.
  39. Hu, Bo; Chen, Junyu; Zhang, Xingfu (January 2019). "Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS". Sensors. 19 (14): 3181. Bibcode:2019Senso..19.3181H. doi: 10.3390/s19143181 . ISSN   1424-8220. PMC   6679266 . PMID   31330996.
  40. Ikehara, Marti E. (October 1994). "Global Positioning System surveying to monitor land subsidence in Sacramento Valley, California, USA". Hydrological Sciences Journal. 39 (5): 417–429. Bibcode:1994HydSJ..39..417I. doi:10.1080/02626669409492765. ISSN   0262-6667.
  41. 1 2 Moradi, Aydin; Emadodin, Somayeh; Beitollahi, Ali; Abdolazimi, Hadi; Ghods, Babak (2023-11-15). "Assessments of land subsidence in Tehran metropolitan, Iran, using Sentinel-1A InSAR". Environmental Earth Sciences. 82 (23): 569. Bibcode:2023EES....82..569M. doi:10.1007/s12665-023-11225-2. ISSN   1866-6299.
  42. 1 2 Hu, Liuru; Navarro-Hernández, María I.; Liu, Xiaojie; Tomás, Roberto; Tang, Xinming; Bru, Guadalupe; Ezquerro, Pablo; Zhang, Qingtao (2022-10-01). "Analysis of regional large-gradient land subsidence in the Alto Guadalentín Basin (Spain) using open-access aerial LiDAR datasets". Remote Sensing of Environment. 280: 113218. Bibcode:2022RSEnv.28013218H. doi:10.1016/j.rse.2022.113218. hdl: 10045/126163 . ISSN   0034-4257.
  43. Davis, E.; Wright, C.; Demetrius, S.; Choi, J.; Craley, G. (2000-06-19). "Precise Tiltmeter Subsidence Monitoring Enhances Reservoir Management". All Days. OnePetro. doi:10.2118/62577-MS.
  44. Andreas, Heri; Abidin, Hasanuddin Zainal; Sarsito, Dina Anggreni; Pradipta, Dhota (2019). "The investigation on high-rise building tilting from the issue of land subsidence in Jakarta City". MATEC Web of Conferences. 270: 06002. doi:10.1051/matecconf/201927006002. ISSN   2261-236X.
  45. 1 2 Tomás, R.; Romero, R.; Mulas, J.; Marturià, J. J.; Mallorquí, J. J.; Lopez-Sanchez, J. M.; Herrera, G.; Gutiérrez, F.; González, P. J.; Fernández, J.; Duque, S.; Concha-Dimas, A.; Cocksley, G.; Castañeda, C.; Carrasco, D. (2014-01-01). "Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain". Environmental Earth Sciences. 71 (1): 163–181. Bibcode:2014EES....71..163T. doi:10.1007/s12665-013-2422-z. ISSN   1866-6299.
  46. Alam, A. K. M. Badrul; Fujii, Yoshiaki; Eidee, Shaolin Jahan; Boeut, Sophea; Rahim, Afikah Binti (2022-08-30). "Prediction of mining-induced subsidence at Barapukuria longwall coal mine, Bangladesh". Scientific Reports. 12 (1): 14800. Bibcode:2022NatSR..1214800A. doi:10.1038/s41598-022-19160-1. ISSN   2045-2322. PMC   9427737 . PMID   36042276.
  47. 1 2 3 4 Xu, Y. S.; Shen, S. L.; Bai, Y. (2006-05-15). "State-of-the-Art of Land Subsidence Prediction due to Groundwater Withdrawal in China". Underground Construction and Ground Movement. Reston, VA: American Society of Civil Engineers: 58–65. doi:10.1061/40867(199)5. ISBN   978-0-7844-0867-4.
  48. Lees, Matthew; Knight, Rosemary; Smith, Ryan (June 2022). "Development and Application of a 1D Compaction Model to Understand 65 Years of Subsidence in the San Joaquin Valley". Water Resources Research. 58 (6). Bibcode:2022WRR....5831390L. doi: 10.1029/2021WR031390 . ISSN   0043-1397.
  49. Tomás, R.; Herrera, G.; Delgado, J.; Lopez-Sanchez, J. M.; Mallorquí, J. J.; Mulas, J. (2010-02-26). "A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain)". Engineering Geology. 111 (1): 19–30. Bibcode:2010EngGe.111...19T. doi:10.1016/j.enggeo.2009.11.004. ISSN   0013-7952.
  50. Zhu, Yan; Shi, Liangsheng; Wu, Jingwei; Ye, Ming; Cui, Lihong; Yang, Jinzhong (2016-05-12). "Regional Quasi-Three-Dimensional Unsaturated-Saturated Water Flow Model Based on a Vertical-Horizontal Splitting Concept". Water. 8 (5): 195. doi: 10.3390/w8050195 . ISSN   2073-4441.
  51. Bonì, Roberta; Meisina, Claudia; Teatini, Pietro; Zucca, Francesco; Zoccarato, Claudia; Franceschini, Andrea; Ezquerro, Pablo; Béjar-Pizarro, Marta; Antonio Fernández-Merodo, José; Guardiola-Albert, Carolina; Luis Pastor, José; Tomás, Roberto; Herrera, Gerardo (2020-06-01). "3D groundwater flow and deformation modelling of Madrid aquifer". Journal of Hydrology. 585: 124773. Bibcode:2020JHyd..58524773B. doi:10.1016/j.jhydrol.2020.124773. hdl: 10045/103419 . ISSN   0022-1694.
  52. Ye, Shujun; Luo, Yue; Wu, Jichun; Yan, Xuexin; Wang, Hanmei; Jiao, Xun; Teatini, Pietro (2016-05-01). "Three-dimensional numerical modeling of land subsidence in Shanghai, China". Hydrogeology Journal. 24 (3): 695–709. Bibcode:2016HydJ...24..695Y. doi:10.1007/s10040-016-1382-2. ISSN   1435-0157.
  53. Liu, Jianxin; Liu, Wenxiang; Allechy, Fabrice Blanchard; Zheng, Zhiwen; Liu, Rong; Kouadio, Kouao Laurent (2024-02-14). "Machine learning-based techniques for land subsidence simulation in an urban area". Journal of Environmental Management. 352: 120078. Bibcode:2024JEnvM.35220078L. doi:10.1016/j.jenvman.2024.120078. ISSN   0301-4797. PMID   38232594.
  54. Li, Huijun; Zhu, Lin; Dai, Zhenxue; Gong, Huili; Guo, Tao; Guo, Gaoxuan; Wang, Jingbo; Teatini, Pietro (December 2021). "Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR". Science of the Total Environment. 799: 149244. Bibcode:2021ScTEn.79949244L. doi:10.1016/j.scitotenv.2021.149244. ISSN   0048-9697. PMID   34365261.
  55. Phien-wej, N.; Giao, P. H.; Nutalaya, P. (2006-02-02). "Land subsidence in Bangkok, Thailand". Engineering Geology. 82 (4): 187–201. doi:10.1016/j.enggeo.2005.10.004. ISSN   0013-7952.
  56. Chen, Mi; Tomás, Roberto; Li, Zhenhong; Motagh, Mahdi; Li, Tao; Hu, Leyin; Gong, Huili; Li, Xiaojuan; Yu, Jun; Gong, Xulong (June 2016). "Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry". Remote Sensing. 8 (6): 468. Bibcode:2016RemS....8..468C. doi: 10.3390/rs8060468 . ISSN   2072-4292.
  57. Hu, Leyin; Dai, Keren; Xing, Chengqi; Li, Zhenhong; Tomás, Roberto; Clark, Beth; Shi, Xianlin; Chen, Mi; Zhang, Rui; Qiu, Qiang; Lu, Yajun (2019-10-01). "Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations". International Journal of Applied Earth Observation and Geoinformation. 82: 101886. Bibcode:2019IJAEO..8201886H. doi:10.1016/j.jag.2019.05.019. hdl: 10045/93393 . ISSN   1569-8432.
  58. Zhu, Lin; Gong, Huili; Chen, Yun; Wang, Shufang; Ke, Yinhai; Guo, Gaoxuan; Li, Xiaojuan; Chen, Beibei; Wang, Haigang; Teatini, Pietro (2020-10-01). "Effects of Water Diversion Project on groundwater system and land subsidence in Beijing, China". Engineering Geology. 276: 105763. Bibcode:2020EngGe.27605763Z. doi:10.1016/j.enggeo.2020.105763. ISSN   0013-7952.
  59. YANG, Cheng-hong; DING, Tao (2011-11-20). "Study on the Survey Datum Construction for the Middle Route of South-to-North Water Diversion Project". South-to-North Water Diversion and Water Science & Technology. 9 (1): 26–28. doi:10.3724/sp.j.1201.2011.01026 (inactive 1 November 2024). ISSN   1672-1683.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  60. Fu, Peiyi; Ge, Yonghui; Ma, Chao; Jia, Xiuming; Shan, Xinjian; Li, Fangfang; Zhang, Xiaoke (October 2009). "A Study of Land Subsidence by Radar Remote Sensing at Datong Jurassic & Carboniferous Period Coalfield". 2009 2nd International Congress on Image and Signal Processing. IEEE. pp. 1–4. doi:10.1109/cisp.2009.5304493. ISBN   978-1-4244-4129-7.
  61. Yang, Cheng-sheng; Zhang, Qin; Zhao, Chao-ying; Wang, Qing-liang; Ji, Ling-yun (2014-04-01). "Monitoring land subsidence and fault deformation using the small baseline subset InSAR technique: A case study in the Datong Basin, China". Journal of Geodynamics. 75: 34–40. doi:10.1016/j.jog.2014.02.002. ISSN   0264-3707.
  62. Hu, Liuru; Tang, Xinming; Tomás, Roberto; Li, Tao; Zhang, Xiang; Li, Zhiwei; Yao, Jiaqi; Lu, Jing (2024-07-01). "Monitoring surface deformation dynamics in the mining subsidence area using LT-1 InSAR interferometry: A case study of Datong, China". International Journal of Applied Earth Observation and Geoinformation. 131: 103936. doi:10.1016/j.jag.2024.103936. ISSN   1569-8432.
  63. Bonì, Roberta; Herrera, Gerardo; Meisina, Claudia; Notti, Davide; Béjar-Pizarro, Marta; Zucca, Francesco; González, Pablo J.; Palano, Mimmo; Tomás, Roberto; Fernández, José; Fernández-Merodo, José Antonio; Mulas, Joaquín; Aragón, Ramón; Guardiola-Albert, Carolina; Mora, Oscar (2015-11-23). "Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study". Engineering Geology. 198: 40–52. Bibcode:2015EngGe.198...40B. doi:10.1016/j.enggeo.2015.08.014. hdl: 10045/50008 . ISSN   0013-7952.
  64. Navarro-Hernández, María I.; Valdes-Abellan, Javier; Tomás, Roberto; Tessitore, Serena; Ezquerro, Pablo; Herrera, Gerardo (2023-09-01). "Analysing the Impact of Land Subsidence on the Flooding Risk: Evaluation Through InSAR and Modelling". Water Resources Management. 37 (11): 4363–4383. Bibcode:2023WatRM..37.4363N. doi: 10.1007/s11269-023-03561-6 . ISSN   1573-1650.
  65. Navarro-Hernández, María I.; Tomás, Roberto; Valdes-Abellan, Javier; Bru, Guadalupe; Ezquerro, Pablo; Guardiola-Albert, Carolina; Elçi, Alper; Batkan, Elif Aysu; Caylak, Baris; Ören, Ali Hakan; Meisina, Claudia; Pedretti, Laura; Rygus, Michelle (2023-12-20). "Monitoring land subsidence induced by tectonic activity and groundwater extraction in the eastern Gediz River Basin (Türkiye) using Sentinel-1 observations". Engineering Geology. 327: 107343. Bibcode:2023EngGe.32707343N. doi:10.1016/j.enggeo.2023.107343. hdl: 10045/138185 . ISSN   0013-7952.
  66. Abidin, Hasanuddin Z.; Andreas, H.; Gamal, M.; Djaja, Rochman; Subarya, C.; Hirose, K.; Maruyama, Y.; Murdohardono, D.; Rajiyowiryono, H. (2005). Sansò, Fernando (ed.). "Monitoring Land Subsidence of Jakarta (Indonesia) Using Leveling, GPS Survey and InSAR Techniques". A Window on the Future of Geodesy. International Association of Geodesy Symposia. 128. Berlin, Heidelberg: Springer: 561–566. doi:10.1007/3-540-27432-4_95. ISBN   978-3-540-27432-2.
  67. Widodo, Joko; Herlambang, Arie; Sulaiman, Albertus; Razi, Pakhrur; Yohandri; Perissin, Daniele; Kuze, Hiroaki; Sri Sumantyo, Josaphat Tetuko (April 2019). "Land subsidence rate analysis of Jakarta Metropolitan Region based on D-InSAR processing of Sentinel data C-Band frequency". Journal of Physics: Conference Series. 1185 (1): 012004. Bibcode:2019JPhCS1185a2004W. doi: 10.1088/1742-6596/1185/1/012004 . ISSN   1742-6588.
  68. Hakim, Wahyu Luqmanul; Achmad, Arief Rizqiyanto; Eom, Jinah; Lee, Chang-Wook (2020-12-14). "Land Subsidence Measurement of Jakarta Coastal Area Using Time Series Interferometry with Sentinel-1 SAR Data". Journal of Coastal Research. 102 (sp1). doi:10.2112/SI102-010.1. ISSN   0749-0208.
  69. Orhan, Osman; Oliver-Cabrera, Talib; Wdowinski, Shimon; Yalvac, Sefa; Yakar, Murat (January 2021). "Land Subsidence and Its Relations with Sinkhole Activity in Karapınar Region, Turkey: A Multi-Sensor InSAR Time Series Study". Sensors. 21 (3): 774. Bibcode:2021Senso..21..774O. doi: 10.3390/s21030774 . ISSN   1424-8220. PMC   7865528 . PMID   33498896.
  70. Herrera, G.; Tomás, R.; Lopez-Sanchez, J.M.; Delgado, J.; Mallorqui, J.J.; Duque, S.; Mulas, J. (March 2007). "Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain)". Engineering Geology. 90 (3–4): 148–159. Bibcode:2007EngGe..90..148H. doi:10.1016/j.enggeo.2007.01.001. hdl: 2117/12906 . ISSN   0013-7952.
  71. Herrera, G.; Álvarez Fernández, M.I.; Tomás, R.; González-Nicieza, C.; López-Sánchez, J.M.; Álvarez Vigil, A.E. (September 2012). "Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III)". Engineering Failure Analysis. 24: 67–76. doi:10.1016/j.engfailanal.2012.03.003. hdl: 20.500.12468/749 . ISSN   1350-6307.
  72. Ortiz-Zamora, Dalia; Ortega-Guerrero, Adrian (January 2010). "Evolution of long-term land subsidence near Mexico City: Review, field investigations, and predictive simulations". Water Resources Research. 46 (1). Bibcode:2010WRR....46.1513O. doi:10.1029/2008WR007398. ISSN   0043-1397.
  73. Cigna, Francesca; Tapete, Deodato (2021-02-01). "Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR". Remote Sensing of Environment. 253: 112161. Bibcode:2021RSEnv.25312161C. doi:10.1016/j.rse.2020.112161. ISSN   0034-4257.
  74. Tomas, R.; Herrera, G.; Cooksley, G.; Mulas, J. (2011-04-11). "Persistent Scatterer Interferometry subsidence data exploitation using spatial tools: The Vega Media of the Segura River Basin case study". Journal of Hydrology. 400 (3): 411–428. Bibcode:2011JHyd..400..411T. doi:10.1016/j.jhydrol.2011.01.057. ISSN   0022-1694.
  75. Tomás, R.; Herrera, G.; Delgado, J.; Lopez-Sanchez, J. M.; Mallorquí, J. J.; Mulas, J. (2010-02-26). "A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain)". Engineering Geology. 111 (1): 19–30. Bibcode:2010EngGe.111...19T. doi:10.1016/j.enggeo.2009.11.004. ISSN   0013-7952.
  76. Tomás, Roberto; Márquez, Yolanda; Lopez-Sanchez, Juan M.; Delgado, José; Blanco, Pablo; Mallorquí, Jordi J.; Martínez, Mónica; Herrera, Gerardo; Mulas, Joaquín (2005-10-15). "Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study". Remote Sensing of Environment. 98 (2): 269–283. Bibcode:2005RSEnv..98..269T. doi:10.1016/j.rse.2005.08.003. ISSN   0034-4257.
  77. Métois, Marianne; Benjelloun, Mouna; Lasserre, Cécile; Grandin, Raphaël; Barrier, Laurie; Dushi, Edmond; Koçi, Rexhep (2020-03-24). "Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania". Solid Earth. 11 (2): 363–378. Bibcode:2020SolE...11..363M. doi: 10.5194/se-11-363-2020 . ISSN   1869-9510.
  78. Smith, Ryan (November 2023). "Aquifer Stress History Contributes to Historic Shift in Subsidence in the San Joaquin Valley, California". Water Resources Research. 59 (11). Bibcode:2023WRR....5935804S. doi: 10.1029/2023WR035804 . ISSN   0043-1397.
  79. Johnson, A.I. (1992). National contributions by TC12 land subsidence committee members. USA. Proc. 12th Int. Conf. Soil Mech. and Found. Eng. pp. 3211–3214.
  80. Zhang, Zhihua; Hu, Changtao; Wu, Zhihui; Zhang, Zhen; Yang, Shuwen; Yang, Wang (2023-05-17). "Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies". Scientific Reports. 13 (1): 8031. Bibcode:2023NatSR..13.8031Z. doi:10.1038/s41598-023-35152-1. ISSN   2045-2322. PMC   10192325 . PMID   37198287.
  81. Xu, Ye-Shuang; Ma, Lei; Du, Yan-Jun; Shen, Shui-Long (2012-09-01). "Analysis of urbanisation-induced land subsidence in Shanghai". Natural Hazards. 63 (2): 1255–1267. Bibcode:2012NatHa..63.1255X. doi:10.1007/s11069-012-0220-7. ISSN   1573-0840.
  82. Yousefi, Roghayeh; Talebbeydokhti, Nasser (2021-06-01). "Subsidence monitoring by integration of time series analysis from different SAR images and impact assessment of stress and aquitard thickness on subsidence in Tehran, Iran". Environmental Earth Sciences. 80 (11): 418. Bibcode:2021EES....80..418Y. doi:10.1007/s12665-021-09714-3. ISSN   1866-6299.
  83. Motagh, Mahdi; Walter, Thomas R.; Sharifi, Mohammad Ali; Fielding, Eric; Schenk, Andreas; Anderssohn, Jan; Zschau, Jochen (August 2008). "Land subsidence in Iran caused by widespread water reservoir overexploitation". Geophysical Research Letters. 35 (16). Bibcode:2008GeoRL..3516403M. doi:10.1029/2008GL033814. ISSN   0094-8276.
  84. Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio (2013-09-26). "Natural versus anthropogenic subsidence of Venice". Scientific Reports. 3 (1): 2710. Bibcode:2013NatSR...3.2710T. doi:10.1038/srep02710. ISSN   2045-2322. PMC   3783893 . PMID   24067871.