Mantle (geology)

Last updated

A mantle is a layer inside a planetary body bounded below by a core and above by a crust. Mantles are made of rock or ices, and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone differentiation by density. All terrestrial planets (including Earth), a number of asteroids, and some planetary moons have mantles.

A planetary body or planetary object is any secondary body in the Solar System that is geologically differentiated or in hydrostatic equilibrium and thus has a planet-like geology: a planet, dwarf planet, or the larger moons and asteroids.

Planetary core innermost layer(s) of a planet

The planetary core consists of the innermost layer(s) of a planet. Cores of specific planets may be entirely solid or entirely liquid, or may be a mixture of solid and liquid layers as is the case in the Earth. In the Solar System, core size can range from about 20% (Moon) to 85% of a planet's radius (Mercury).

Crust (geology) The outermost solid shell of a rocky planet, dwarf planet, or natural satellite

In geology, the crust is the outermost solid shell of a rocky planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase.


Earth's mantle

The internal structure of Earth Earth poster.svg
The internal structure of Earth

The Earth's mantle is a layer of silicate rock between the crust and the outer core. Its mass of 4.01 × 1024 kg is 67% the mass of the Earth. [1] It has a thickness of 2,900 kilometres (1,800 mi) [1] making up about 84% of Earth's volume. It is predominantly solid but in geological time it behaves as a viscous fluid. Partial melting of the mantle at mid-ocean ridges produces oceanic crust, and partial melting of the mantle at subduction zones produces continental crust. [2]

Silicate minerals Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals with predominantly silicate anions. They are the largest and most important class of rock-forming minerals and make up approximately 90 percent of the Earth's crust.

Outer core A fluid layer composed of mostly iron and nickel between Earths solid inner core and its mantle

The outer core of the Earth is a fluid layer about 2,400 km (1,500 mi) thick and composed of mostly iron and nickel that lies above Earth's solid inner core and below its mantle. Its outer boundary lies 2,890 km (1,800 mi) beneath Earth's surface. The transition between the inner core and outer core is located approximately 5,150 km (3,200 mi) beneath the Earth's surface. Unlike the inner core, the outer core is liquid. The inner core is also referred to as the solid core.

Geologic time scale A system of chronological dating that relates geological strata to time

The geologic time scale (GTS) is a system of chronological dating that relates geological strata (stratigraphy) to time. It is used by geologists, paleontologists, and other Earth scientists to describe the timing and relationships of events that have occurred during Earth's history. The table of geologic time spans, presented here, agree with the nomenclature, dates and standard color codes set forth by the International Commission on Stratigraphy (ICS).


Rheological structure

The Earth's mantle is divided into two major rheological layers: the rigid lithosphere comprising the uppermost mantle, and the more viscous asthenosphere, separated by the lithosphere-asthenosphere boundary. Lithosphere underlying ocean crust has a thickness of around 100 km, whereas lithosphere underlying continental crust generally has a thickness of 150-200 km. [3] The lithosphere and overlying crust make up tectonic plates, which move over the asthenosphere.

Rheology is the study of the flow of matter, primarily in a liquid state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force. It is a branch of physics which deals with the deformation and flow of materials, both solids and liquids.

Lithosphere The rigid, outermost shell of a terrestrial-type planet or natural satellite that is defined by its rigid mechanical properties

A lithosphere is the rigid, outermost shell of a terrestrial-type planet, or natural satellite, that is defined by its rigid mechanical properties. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet, the crust, is defined on the basis of its chemistry and mineralogy.

Asthenosphere The highly viscous, mechanically weak and ductile region of the Earths upper mantle

The asthenosphere is the highly viscous, mechanically weak and ductilely deforming region of the upper mantle of the Earth. It lies below the lithosphere, at depths between approximately 80 and 200 km below the surface. The Lithosphere–asthenosphere boundary is usually referred to as LAB. The asthenosphere is almost solid, although some of its regions could be molten. The lower boundary of the asthenosphere is not well defined. The thickness of the asthenosphere depends mainly on the temperature. However, the rheology of the asthenosphere also depends on the rate of deformation, which suggests that the asthenosphere could be also formed as a result of a high rate of deformation. In some regions the asthenosphere could extend as deep as 700 km (430 mi). It is considered the source region of mid-ocean ridge basalt (MORB).

Seismic structure

The Earth's mantle is divided into three major layers defined by sudden changes in seismic velocity:

Seismic wave waves of energy that travel through the Earths layers, and are a result of earthquakes, volcanic eruptions, magma movement, large landslides and large man-made explosions

Seismic waves are waves of energy that travel through the Earth's layers, and are a result of earthquakes, volcanic eruptions, magma movement, large landslides and large man-made explosions that give out low-frequency acoustic energy. Many other natural and anthropogenic sources create low-amplitude waves commonly referred to as ambient vibrations. Seismic waves are studied by geophysicists called seismologists. Seismic wave fields are recorded by a seismometer, hydrophone, or accelerometer.

Mohorovičić discontinuity Boundary between the Earths crust and the mantle

The Mohorovičić discontinuity, usually referred to as the Moho, is the boundary between the Earth's crust and the mantle.

The lower mantle represents approximately 56% of the Earth's total volume and is located 660–2900 km below the Earth's surface in between the transition zone and the outer core. The Preliminary reference Earth model (PREM) separates the lower mantle into three sections, the uppermost (660–770 km), mid-lower mantle (770–2700 km), and the D" layer (2700–2900 km). Pressures and temperature at the lower mantle ranges from 24-127 GPa and 1900-2600K. It has been proposed that the composition of the lower mantle is pyrolitic containing three major phases of bridgmanite, ferropericlase and calcium-silicate perovskite. The pressure conditions in the lower mantle was shown to induce a spin transition of iron-bearing bridgmanite and ferropericlase which may affect both mantle plume dynamics and lower mantle chemistry.

The lower ~200 km of the lower mantle constitutes the D" (D-double-prime) layer, a region with anomalous seismic properties. This region also contains LLSVPs and ULVZs.

Large low-shear-velocity provinces

Large low-shear-velocity provinces, LLSVPs, also called LLVPs or superplumes, are characteristic structures of parts of the lowermost mantle of the Earth. These provinces are characterized by slow shear wave velocities and were discovered by seismic tomography of the deep Earth. There are two main provinces: the African LLSVP and the Pacific LLSVP. Both extend laterally for thousands of kilometers and possibly up to 1000 km vertically from the core-mantle boundary. The Pacific LLSVP has specific dimensions of 3000 km across and 300 m higher than the surrounding ocean-floor, and is situated over four hotspots that suggest multiple mantle plumes underneath. These zones represent around 8% of the volume of the mantle. Other names for LLSVPs include superwells, thermo-chemical piles, or hidden reservoirs. Some of these names, however, are more interpretive of their geodynamical or geochemical effects, while many questions remain about their nature.

Ultra low velocity zones (ULVZs) are patches on the core-mantle boundary that have extremely low seismic velocities. The zones are mapped to be hundreds of kilometers in diameter and tens of kilometers thick. Their shear wave velocities can be up to 30% lower than surrounding material. The composition and origin of the zones remain uncertain. The zones appear to correlate with edges of the African and Pacific Large low-shear-velocity provinces (LLSVPs) as well as the location of hotspots.

Mineralogical structure

The top of the mantle is defined by a sudden increase in seismic velocity, which was first noted by Andrija Mohorovičić in 1909; this boundary is now referred to as the Mohorovičić discontinuity or "Moho". [5] [6]

The upper mantle is dominantly peridotite, composed primarily of variable proportions of the minerals olivine, clinopyroxene, orthopyroxene, and an aluminous phase. The aluminous phase is plagioclase in the uppermost mantle, then spinel, and then garnet below ~100 km. Gradually through the upper mantle, pyroxenes become less stable and transform into majoritic garnet.

At the top of the transition zone, olivine undergoes isochemical phase transitions to wadsleyite and ringwoodite. Unlike nominally anhydrous olivine, these high-pressure olivine polymorphs have a large capacity to store water in their crystal structure. This has led to the hypothesis that the transition zone may host a large quantity of water. [7] At the base of the transition zone, ringwoodite decomposes into bridgmanite (formerly called magnesium silicate perovskite), and ferropericlase. Garnet also becomes unstable at or slightly below the base of the transition zone.

The lower mantle is composed primarily of bridgmanite and ferropericlase, with minor amounts of calcium perovskite, calcium-ferrite structured oxide, and stishovite. In the lowermost ~200 km of the mantle, bridgmanite isochemically transforms into post-perovskite.


The chemical composition of the mantle is difficult to determine with a high degree of certainty because it is largely inaccessible. Rare exposures of mantle rocks occur in ophiolites, where sections of oceanic lithosphere have been obducted onto a continent. Mantle rocks are also sampled as xenoliths within basalts or kimberlites.

Composition of the Earth's upper mantle (depleted MORB) [8] [9]
CompoundMass percent
SiO2 44.71
Al2O3 3.98
FeO 8.18
MnO 0.13
MgO 38.73
CaO 3.17
Na2O 0.13
Cr2O3 0.57
TiO2 0.13
NiO 0.24
K2O 0.006
P2O5 0.019

Most estimates of the mantle composition are based on rocks that sample only the uppermost mantle. There is debate as to whether the rest of the mantle, especially the lower mantle, has the same bulk composition. [10] The mantle's composition has changed through the Earth's history due to the extraction of magma that solidified to form oceanic crust and continental crust.

Temperature and pressure

In the mantle, temperatures range from approximately 200 °C (392 °F) at the upper boundary with the crust to approximately 4,000 °C (7,230 °F) at the core-mantle boundary. [11] The geothermal gradient of the mantle increases rapidly in the thermal boundary layers at the top and bottom of the mantle, and increases gradually through the interior of the mantle. [12] Although the higher temperatures far exceed the melting points of the mantle rocks at the surface (about 1200 °C for representative peridotite), the mantle is almost exclusively solid. [13] The enormous lithostatic pressure exerted on the mantle prevents melting, because the temperature at which melting begins (the solidus) increases with pressure.

The pressure in the mantle increases from a few kbar at the Moho to 1390 kbar (139 GPa) at the core-mantle boundary [11] .


This figure is a snapshot of one time-step in a model of mantle convection. Colors closer to red are hot areas and colors closer to blue are cold areas. In this figure, heat received at the core-mantle boundary results in thermal expansion of the material at the bottom of the model, reducing its density and causing it to send plumes of hot material upwards. Likewise, cooling of material at the surface results in its sinking. Convection-snapshot.png
This figure is a snapshot of one time-step in a model of mantle convection. Colors closer to red are hot areas and colors closer to blue are cold areas. In this figure, heat received at the core–mantle boundary results in thermal expansion of the material at the bottom of the model, reducing its density and causing it to send plumes of hot material upwards. Likewise, cooling of material at the surface results in its sinking.

Because of the temperature difference between the Earth's surface and outer core and the ability of the crystalline rocks at high pressure and temperature to undergo slow, creeping, viscous-like deformation over millions of years, there is a convective material circulation in the mantle. [14] Hot material upwells, while cooler (and heavier) material sinks downward. Downward motion of material occurs at convergent plate boundaries called subduction zones. Locations on the surface that lie over plumes are predicted to have high elevation (because of the buoyancy of the hotter, less-dense plume beneath) and to exhibit hot spot volcanism. The volcanism often attributed to deep mantle plumes is alternatively explained by passive extension of the crust, permitting magma to leak to the surface (the "Plate" hypothesis). [15]

The convection of the Earth's mantle is a chaotic process (in the sense of fluid dynamics), which is thought to be an integral part of the motion of plates. Plate motion should not be confused with continental drift which applies purely to the movement of the crustal components of the continents. The movements of the lithosphere and the underlying mantle are coupled since descending lithosphere is an essential component of convection in the mantle. The observed continental drift is a complicated relationship between the forces causing oceanic lithosphere to sink and the movements within Earth's mantle.

Although there is a tendency to larger viscosity at greater depth, this relation is far from linear and shows layers with dramatically decreased viscosity, in particular in the upper mantle and at the boundary with the core. [16] The mantle within about 200 km (120 mi) above the core–mantle boundary appears to have distinctly different seismic properties than the mantle at slightly shallower depths; this unusual mantle region just above the core is called D ("D double-prime"), a nomenclature introduced over 50 years ago by the geophysicist Keith Bullen. [17] D may consist of material from subducted slabs that descended and came to rest at the core–mantle boundary and/or from a new mineral polymorph discovered in perovskite called post-perovskite.

Earthquakes at shallow depths are a result of strike-slip faulting; however, below about 50 km (31 mi) the hot, high pressure conditions ought to inhibit further seismicity. The mantle is considered to be viscous and incapable of brittle faulting. However, in subduction zones, earthquakes are observed down to 670 km (420 mi). A number of mechanisms have been proposed to explain this phenomenon, including dehydration, thermal runaway, and phase change. The geothermal gradient can be lowered where cool material from the surface sinks downward, increasing the strength of the surrounding mantle, and allowing earthquakes to occur down to a depth of 400 km (250 mi) and 670 km (420 mi).

The pressure at the bottom of the mantle is ~136 GPa (1.4 million atm). [18] Pressure increases as depth increases, since the material beneath has to support the weight of all the material above it. The entire mantle, however, is thought to deform like a fluid on long timescales, with permanent plastic deformation accommodated by the movement of point, line, and/or planar defects through the solid crystals composing the mantle. Estimates for the viscosity of the upper mantle range between 1019 and 1024 Pa·s, depending on depth, [16] temperature, composition, state of stress, and numerous other factors. Thus, the upper mantle can only flow very slowly. However, when large forces are applied to the uppermost mantle it can become weaker, and this effect is thought to be important in allowing the formation of tectonic plate boundaries.


Exploration of the mantle is generally conducted at the seabed rather than on land because of the relative thinness of the oceanic crust as compared to the significantly thicker continental crust.

The first attempt at mantle exploration, known as Project Mohole, was abandoned in 1966 after repeated failures and cost over-runs. The deepest penetration was approximately 180 m (590 ft). In 2005 an oceanic borehole reached 1,416 metres (4,646 ft) below the sea floor from the ocean drilling vessel JOIDES Resolution .

On 5 March 2007, a team of scientists on board the RRS James Cook embarked on a voyage to an area of the Atlantic seafloor where the mantle lies exposed without any crust covering, midway between the Cape Verde Islands and the Caribbean Sea. The exposed site lies approximately three kilometres beneath the ocean surface and covers thousands of square kilometres. [19] [20] A relatively difficult attempt to retrieve samples from the Earth's mantle was scheduled for later in 2007. [21] The Chikyu Hakken mission attempted to use the Japanese vessel Chikyū to drill up to 7,000 m (23,000 ft) below the seabed. This is nearly three times as deep as preceding oceanic drillings.

A novel method of exploring the uppermost few hundred kilometres of the Earth was proposed in 2005, consisting of a small, dense, heat-generating probe which melts its way down through the crust and mantle while its position and progress are tracked by acoustic signals generated in the rocks. [22] The probe consists of an outer sphere of tungsten about one metre in diameter with a cobalt-60 interior acting as a radioactive heat source. It was calculated that such a probe will reach the oceanic Moho in less than 6 months and attain minimum depths of well over 100 km (62 mi) in a few decades beneath both oceanic and continental lithosphere. [23]

Exploration can also be aided through computer simulations of the evolution of the mantle. In 2009, a supercomputer application provided new insight into the distribution of mineral deposits, especially isotopes of iron, from when the mantle developed 4.5 billion years ago. [24]

Other planetary mantles

Mercury has a silicate mantle approximately 490 km thick, constituting 28% of its mass. [1] Venus's silicate mantle is approximately 2800 km thick, constituting around 70% of its mass. [1] Mars's silicate mantle is approximately 1600 km thick, constituting ~74-88% of its mass, [1] and may be represented by chassignite meteorites. [25]

Moons with mantles

Jupiter's moons Io, Europa, and Ganymede have silicate mantles; Io's ~1100 km silicate mantle is overlain by a volcanic crust, Ganymede's ~1315 km thick silicate mantle is overlain by ~835 km of ice, and Europa's ~1165 km silicate mantle is overlain by ~85 km of ice and possibly liquid water. [1]

The silicate mantle of the Earth's moon is approximately 1300-1400 km thick, and is the source of mare basalts. [26] The lunar mantle might possibly be exposed in the South Pole-Aitken basin and/or the Crisium basin. [26] The lunar mantle contains a seismic discontinuity at ~500 km depth, most likely related to a change in composition. [26]

Titan and Triton each have a mantle made of ice or other solid volatile substances. [27] [28]

Asteroids with mantles

Some of the largest asteroids have mantles; [29] for example, Vesta has a silicate mantle similar in composition to diogenite meteorites. [30]

See also

Related Research Articles

Subduction A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process that takes place at convergent boundaries of tectonic plates where one plate moves under another and is forced to sink due to gravity into the mantle. Regions where this process occurs are known as subduction zones. Rates of subduction are typically in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.

Convergent boundary Region of active deformation between colliding lithospheric plates

Convergent boundaries are areas on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other causing a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Benioff Zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

Oceanic crust The uppermost layer of the oceanic portion of a tectonic plate

Oceanic crust is the uppermost layer of the oceanic portion of a tectonic plate. It is composed of the upper oceanic crust, with pillow lavas and a dike complex, and the lower oceanic crust, composed of troctolite, gabbro and ultramafic cumulates. The crust overlies the solidified and uppermost layer of the mantle. The crust and the solid mantle layer together constitute oceanic lithosphere.

Structure of the Earth inner structure of the planet Earth, consisting of several concentric spherical layers

The internal structure of the Earth is layered in spherical shells: an outer silicate solid crust, a highly viscous asthenosphere and mantle, a liquid outer core that is much less viscous than the mantle, and a solid inner core. Scientific understanding of the internal structure of the Earth is based on observations of topography and bathymetry, observations of rock in outcrop, samples brought to the surface from greater depths by volcanoes or volcanic activity, analysis of the seismic waves that pass through the Earth, measurements of the gravitational and magnetic fields of the Earth, and experiments with crystalline solids at pressures and temperatures characteristic of the Earth's deep interior.

Core–mantle boundary Discontinuity where the bottom of the planets mantle meets the outer layer of the core

The core–mantle boundary of the Earth lies between the planet's silicate mantle and its liquid iron-nickel outer core. This boundary is located at approximately 2891 km (1796 mi) depth beneath the Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic perovskite mineralogy of the deep mantle named post-perovskite. Seismic tomography studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific large low-shear-velocity provinces (LLSVPs).

Post-perovskite (pPv) is a high-pressure phase of magnesium silicate (MgSiO3). It is composed of the prime oxide constituents of the Earth's rocky mantle (MgO and SiO2), and its pressure and temperature for stability imply that it is likely to occur in portions of the lowermost few hundred km of Earth's mantle.

Mantle convection The slow creeping motion of Earths solid silicate mantle caused by convection currents carrying heat from the interior to the planets surface

Mantle convection is the slow creeping motion of Earth's solid silicate mantle caused by convection currents carrying heat from the interior to the planet's surface.

Mesosphere (mantle) The part of the Earths mantle below the lithosphere and the asthenosphere, but above the outer core

In geology, the mesosphere refers to the part of the Earth's mantle below the lithosphere and the asthenosphere, but above the outer core. The upper boundary is defined by the sharp increase in seismic wave velocities and density at a depth of 660 kilometers (410 mi). At a depth of 660 km, ringwoodite (gamma-(Mg,Fe)2SiO4) decomposes into Mg-Si perovskite and magnesiowüstite. This reaction marks the boundary between upper mantle and lower mantle. This measurement is estimated from seismic data and high-pressure laboratory experiments.

Non-volcanic passive margins (NVPM) constitute one end member of the transitional crustal types that lie beneath passive continental margins; the other end member being volcanic passive margins (VPM). Transitional crust welds continental crust to oceanic crust along the lines of continental break-up. Both VPM and NVPM form during rifting, when a continent rifts to form a new ocean basin. NVPM are different from VPM because of a lack of volcanism. Instead of intrusive magmatic structures, the transitional crust is composed of stretched continental crust and exhumed upper mantle. NVPM are typically submerged and buried beneath thick sediments, so they must be studied using geophysical techniques or drilling. NVPM have diagnostic seismic, gravity, and magnetic characteristics that can be used to distinguish them from VPM and for demarcating the transition between continental and oceanic crust.

Volcanic passive margins (VPM) and non-volcanic passive margins are the two forms of transitional crust that lie beneath passive continental margins that occur on Earth as the result of the formation of ocean basins via continental rifting. Initiation of igneous processes associated with volcanic passive margins occurs before and/or during the rifting process depending on the cause of rifting. There are two accepted models for VPM formation: hotspots/mantle plumes and slab pull. Both result in large, quick lava flows over a relatively short period of geologic time. VPM's progress further as cooling and subsidence begins as the margins give way to formation of normal oceanic crust from the widening rifts.

Low-velocity zone

The low-velocity zone (LVZ) occurs close to the boundary between the lithosphere and the asthenosphere in the upper mantle. It is characterized by unusually low seismic shear wave velocity compared to the surrounding depth intervals. This range of depths also corresponds to anomalously high electrical conductivity. It is present between about 80 and 300 km depth. This appears to be universally present for S waves, but may be absent in certain regions for P waves. A second low-velocity zone has been detected in a thin ≈50 km layer at the core-mantle boundary. These LVZs may have important implications for plate tectonics and the origin of the Earth's crust.

Crustal recycling

Crustal recycling is a tectonic process by which surface material from the lithosphere is recycled into the mantle by subduction erosion or delamination. The subducting slabs carry volatile compounds and water into the mantle, as well as crustal material with an isotopic signature different from that of primitive mantle. Identification of this crustal signature in mantle-derived rocks is proof of crustal recycling.

Silicate perovskite is either (Mg,Fe)SiO3 (the magnesian end-member is called bridgmanite) or CaSiO3 (calcium silicate) when arranged in a perovskite structure. Silicate perovskites are not stable at Earth's surface, and are mainly found in the lower part of Earth's mantle, between about 670 and 2,700 km (420 and 1,680 mi) depth. They are thought to form the main mineral phases, together with ferropericlase.

Lithosphere–asthenosphere boundary A level representing a mechanical difference between layers in Earth’s inner structure

The Lithosphere–asthenosphere boundary (LAB) represents a mechanical difference between layers in Earth's inner structure. Earth's inner structure can be described both chemically and mechanically. The Lithosphere–asthenosphere boundary lies between Earth's cooler, rigid lithosphere and the warmer, ductile asthenosphere. The actual depth of the boundary is still a topic of debate and study, although it is known to vary according to the environment.

Subcontinental lithospheric mantle

The subcontinental lithospheric mantle (SCLM) is the uppermost solid part of Earth's mantle associated with the continental lithosphere.


  1. 1 2 3 4 5 6 Katharina., Lodders (1998). The planetary scientist's companion. Fegley, Bruce. New York: Oxford University Press. ISBN   978-1423759836. OCLC   65171709.
  2. "What is the Earth's Mantle Made Of? - Universe Today". Universe Today. 2016-03-26. Retrieved 2018-11-24.
  3. Stephen, Marshak (2015). Earth: Portrait of a Planet (5th ed.). New York: W. W. Norton & Company. ISBN   9780393937503. OCLC   897946590.
  4. The location of the base of the crust varies from approximately 10 to 70 kilometers. Oceanic crust is generally less than 10 kilometers thick. "Standard" continental crust is around 35 kilometers thick, and the large crustal root under the Tibetan Plateau is approximately 70 kilometers thick.
  5. Alden, Andrew (2007). "Today's Mantle: a guided tour". . Retrieved 2007-12-25.
  6. "Istria on the Internet – Prominent Istrians – Andrija Mohorovicic". 2007. Retrieved 2007-12-25.
  7. Bercovici, David; Karato, Shun-ichiro (September 2003). "Whole-mantle convection and the transition-zone water filter". Nature. 425 (6953): 39–44. doi:10.1038/nature01918. ISSN   0028-0836. PMID   12955133.
  8. Workman, Rhea K.; Hart, Stanley R. (February 2005). "Major and trace element composition of the depleted MORB mantle (DMM)". Earth and Planetary Science Letters. 231 (1–2): 53–72. doi:10.1016/j.epsl.2004.12.005. ISSN   0012-821X.
  9. Anderson, D.L. (2007). New Theory of the Earth. Cambridge University Press. p. 301. ISBN   9780521849593.
  10. Murakami, Motohiko; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei (May 2012). "A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data". Nature. 485 (7396): 90–94. doi:10.1038/nature11004. ISSN   0028-0836.
  11. 1 2 Katharina., Lodders (1998). The planetary scientist's companion. Fegley, Bruce. New York: Oxford University Press. ISBN   978-1423759836. OCLC   65171709.
  12. Turcotte, DL; Schubert, G (2002). "4". Geodynamics (2nd ed.). Cambridge, England, UK: Cambridge University Press. pp. 136–7. ISBN   978-0-521-66624-4.
  13. Louie, J. (1996). "Earth's Interior". University of Nevada, Reno. Retrieved 2007-12-24.
  14. Alden, Andrew (2007). "Today's Mantle: a guided tour". . Retrieved 2007-12-25.
  15. Foulger, G.R. (2010). Plates vs. Plumes: A Geological Controversy. Wiley-Blackwell. ISBN   978-1-4051-6148-0.
  16. 1 2 Walzer, Uwe; Hendel, Roland and Baumgardner, John. Mantle Viscosity and the Thickness of the Convective Downwellings.
  17. Alden, Andrew. "The End of D-Double-Prime Time?". Retrieved 2007-12-25.
  18. Burns, Roger George (1993). Mineralogical Applications of Crystal Field Theory. Cambridge University Press. p. 354. ISBN   978-0-521-43077-7 . Retrieved 2007-12-26.
  19. Than, Ker (2007-03-01). "Scientists to study gash on Atlantic seafloor". . Retrieved 2008-03-16. A team of scientists will embark on a voyage next week to study an “open wound” on the Atlantic seafloor where the Earth’s deep interior lies exposed without any crust covering.
  20. "Earth's Crust Missing In Mid-Atlantic". Science Daily . 2007-03-02. Retrieved 2008-03-16. Cardiff University scientists will shortly set sail (March 5) to investigate a startling discovery in the depths of the Atlantic.
  21. "Japan hopes to predict 'Big One' with journey to center of Earth". . 2005-12-15. Archived from the original on 2005-12-19. Retrieved 2008-03-16. An ambitious Japanese-led project to dig deeper into the Earth's surface than ever before will be a breakthrough in detecting earthquakes including Tokyo's dreaded "Big One," officials said Thursday.
  22. Ojovan M.I., Gibb F.G.F., Poluektov P.P., Emets E.P. 2005. Probing of the interior layers of the Earth with self-sinking capsules. Atomic Energy, 99, 556–562
  23. Ojovan M.I., Gibb F.G.F. "Exploring the Earth’s Crust and Mantle Using Self-Descending, Radiation-Heated, Probes and Acoustic Emission Monitoring". Chapter 7. In: Nuclear Waste Research: Siting, Technology and Treatment, ISBN   978-1-60456-184-5, Editor: Arnold P. Lattefer, Nova Science Publishers, Inc. 2008
  24. University of California – Davis (2009-06-15). Super-computer Provides First Glimpse Of Earth's Early Magma Interior. ScienceDaily. Retrieved on 2009-06-16.
  25. Swindle, T. D. (2002-01-01). "Martian Noble Gases". Reviews in Mineralogy and Geochemistry. 47 (1): 171–190. doi:10.2138/rmg.2002.47.6. ISSN   1529-6466.
  26. 1 2 3 Wieczorek, M. A. (2006-01-01). "The Constitution and Structure of the Lunar Interior". Reviews in Mineralogy and Geochemistry. 60 (1): 221–364. doi:10.2138/rmg.2006.60.3. ISSN   1529-6466.
  27. "Layers of Titan". NASA. 23 February 2012. Retrieved 7 October 2015.
  28. "Triton: In Depth". NASA . Retrieved 16 October 2015.
  29. "Griffith Observatory - Pieces of the Sky - Meteorite Histories". Retrieved 2018-11-24.
  30. Reddy, Vishnu; Nathues, Andreas; Gaffey, Michael J. (2011-03-01). "First fragment of Asteroid 4 Vesta's mantle detected". Icarus. 212 (1): 175–179. doi:10.1016/j.icarus.2010.11.032. ISSN   0019-1035.

Further reading