Continental crust

Last updated

The thickness of Earth's crust (km) Topo.jpg
The thickness of Earth's crust (km)
Continental and oceanic crust on the upper earth mantle Continental and oceanic crust.png
Continental and oceanic crust on the upper earth mantle

Continental crust is the layer of igneous, sedimentary, and metamorphic rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called sial because its bulk composition is richer in aluminium silicates (Al-Si) and has a lower density compared to the oceanic crust, [1] [2] called sima which is richer in magnesium silicate (Mg-Si) minerals. Changes in seismic wave velocities have shown that at a certain depth (the Conrad discontinuity), there is a reasonably sharp contrast between the more felsic upper continental crust and the lower continental crust, which is more mafic in character. [3]

Contents

The continental crust consists of various layers, with a bulk composition that is intermediate (SiO2 wt% = 60.6). [4] The average density of continental crust is about 2.83 g/cm3 (0.102 lb/cu in), [5] less dense than the ultramafic material that makes up the mantle, which has a density of around 3.3 g/cm3 (0.12 lb/cu in). Continental crust is also less dense than oceanic crust, whose density is about 2.9 g/cm3 (0.10 lb/cu in). At 25 to 70 km (16 to 43 mi) in thickness, continental crust is considerably thicker than oceanic crust, which has an average thickness of around 7 to 10 km (4.3 to 6.2 mi). Approx. 41% of Earth's surface area [6] [7] and about 70% of the volume of Earth's crust is continental crust. [8]

Most continental crust is dry land above sea level. However, 94% of the Zealandia continental crust region is submerged beneath the Pacific Ocean, [9] with New Zealand constituting 93% of the above-water portion.

Importance

Because the surface of continental crust mainly lies above sea level, its existence allowed land life to evolve from marine life. Its existence also provides broad expanses of shallow water known as epeiric seas and continental shelves where complex metazoan life could become established during early Paleozoic time, in what is now called the Cambrian explosion. [10]

Origin

All continental crust is ultimately derived from mantle-derived melts (mainly basalt) through fractional differentiation of basaltic melt and the assimilation (remelting) of pre-existing continental crust. The relative contributions of these two processes in creating continental crust are debated, but fractional differentiation is thought to play the dominant role. [11] These processes occur primarily at magmatic arcs associated with subduction.

There is little evidence of continental crust prior to 3.5 Ga. [12] About 20% of the continental crust's current volume was formed by 3.0 Ga. [13] There was relatively rapid development on shield areas consisting of continental crust between 3.0 and 2.5 Ga. [12] During this time interval, about 60% of the continental crust's current volume was formed. [13] The remaining 20% has formed during the last 2.5 Ga.

Proponents of a steady-state hypothesis argue that the total volume of continental crust has remained more or less the same after early rapid planetary differentiation of Earth and that presently found age distribution is just the result of the processes leading to the formation of cratons (the parts of the crust clustered in cratons being less likely to be reworked by plate tectonics). [14] However, this is not generally accepted. [15]

Forces at work

In contrast to the persistence of continental crust, the size, shape, and number of continents are constantly changing through geologic time. Different tracts rift apart, collide and recoalesce as part of a grand supercontinent cycle. [16]

There are currently about 7 billion cubic kilometres (1.7 billion cubic miles) of continental crust, but this quantity varies because of the nature of the forces involved. The relative permanence of continental crust contrasts with the short life of oceanic crust. Because continental crust is less dense than oceanic crust, when active margins of the two meet in subduction zones, the oceanic crust is typically subducted back into the mantle. Continental crust is rarely subducted (this may occur where continental crustal blocks collide and overthicken, causing deep melting under mountain belts such as the Himalayas or the Alps). For this reason the oldest rocks on Earth are within the cratons or cores of the continents, rather than in repeatedly recycled oceanic crust; the oldest intact crustal fragment is the Acasta Gneiss at 4.01 Ga, whereas the oldest large-scale oceanic crust (located on the Pacific Plate offshore of the Kamchatka Peninsula) is from the Jurassic (≈180 Ma), although there might be small older remnants in the Mediterranean Sea at about 340 Ma. [17] Continental crust and the rock layers that lie on and within it are thus the best archive of Earth's history. [7] [18]

The height of mountain ranges is usually related to the thickness of crust. This results from the isostasy associated with orogeny (mountain formation). The crust is thickened by the compressive forces related to subduction or continental collision. The buoyancy of the crust forces it upwards, the forces of the collisional stress balanced by gravity and erosion. This forms a keel or mountain root beneath the mountain range, which is where the thickest crust is found. [19] The thinnest continental crust is found in rift zones, where the crust is thinned by detachment faulting and eventually severed, replaced by oceanic crust. The edges of continental fragments formed this way (both sides of the Atlantic Ocean, for example) are termed passive margins.

The high temperatures and pressures at depth, often combined with a long history of complex distortion, cause much of the lower continental crust to be metamorphic – the main exception to this being recent igneous intrusions. Igneous rock may also be "underplated" to the underside of the crust, i.e. adding to the crust by forming a layer immediately beneath it.

Continental crust is produced and (far less often) destroyed mostly by plate tectonic processes, especially at convergent plate boundaries. Additionally, continental crustal material is transferred to oceanic crust by sedimentation. New material can be added to the continents by the partial melting of oceanic crust at subduction zones, causing the lighter material to rise as magma, forming volcanoes. Also, material can be accreted horizontally when volcanic island arcs, seamounts or similar structures collide with the side of the continent as a result of plate tectonic movements. Continental crust is also lost through erosion and sediment subduction, tectonic erosion of forearcs, delamination, and deep subduction of continental crust in collision zones. [20] Many theories of crustal growth are controversial, including rates of crustal growth and recycling, whether the lower crust is recycled differently from the upper crust, and over how much of Earth history plate tectonics has operated and so could be the dominant mode of continental crust formation and destruction. [14]

It is a matter of debate whether the amount of continental crust has been increasing, decreasing, or remaining constant over geological time. One model indicates that at prior to 3.7 Ga ago continental crust constituted less than 10% of the present amount. [21] By 3.0 Ga ago the amount was about 25%, and following a period of rapid crustal evolution it was about 60% of the current amount by 2.6 Ga ago. [22] The growth of continental crust appears to have occurred in spurts of increased activity corresponding to five episodes of increased production through geologic time. [23]

See also

Related Research Articles

<span class="mw-page-title-main">Plate tectonics</span> Movement of Earths lithosphere

Plate tectonics is the generally accepted scientific theory that considers the Earth's lithosphere to comprise a number of large tectonic plates which have been slowly moving since about 3.4 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. Plate tectonics came to be generally accepted by geoscientists after seafloor spreading was validated in the mid to late 1960s.

<span class="mw-page-title-main">Supercontinent</span> Landmass comprising more than one continental core, or craton

In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain building process. An orogeny is an event that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Proterozoic</span> Third eon of the geologic timescale, last eon of the Precambrian Supereon

The Proterozoic is a geological eon spanning the time interval from 2500 to 538.8 million years ago. It is the most recent part of the Precambrian "supereon". It is also the longest eon of the Earth's geologic time scale, and it is subdivided into three geologic eras : the Paleoproterozoic, Mesoproterozoic, and Neoproterozoic.

<span class="mw-page-title-main">Lithosphere</span> Outermost shell of a terrestrial-type planet or natural satellite

A lithosphere is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of up to thousands of years or more. The crust and upper mantle are distinguished on the basis of chemistry and mineralogy.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.

<span class="mw-page-title-main">Ophiolite</span> Uplifted and exposed oceanic crust

An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed above sea level and often emplaced onto continental crustal rocks.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Island arc</span> Arc-shaped archipelago formed by intense seismic activity of long chains of active volcanoes

Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle along the subduction zone. They are the principal way by which continental growth is achieved.

<span class="mw-page-title-main">African Plate</span> A major tectonic plate underlying Africa west of the East African Rift

The African Plate is a major tectonic plate that includes much of the continent of Africa and the adjacent oceanic crust to the west and south. It is bounded by the North American Plate and South American Plate to the west ; the Arabian Plate and Somali Plate to the east; the Eurasian Plate, Aegean Sea Plate and Anatolian Plate to the north; and the Antarctic Plate to the south.

Arctica or Arctida was an ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.

<span class="mw-page-title-main">Volcanic arc</span> Chain of volcanoes formed above a subducting plate

A volcanic arc is a belt of volcanoes formed above a subducting oceanic tectonic plate, with the belt arranged in an arc shape as seen from above. Volcanic arcs typically parallel an oceanic trench, with the arc located further from the subducting plate than the trench. The oceanic plate is saturated with water, mostly in the form of hydrous minerals such as micas, amphiboles, and serpentine minerals. As the oceanic plate is subducted, it is subjected to increasing pressure and temperature with increasing depth. The heat and pressure break down the hydrous minerals in the plate, releasing water into the overlying mantle. Volatiles such as water drastically lower the melting point of the mantle, causing some of the mantle to melt and form magma at depth under the overriding plate. The magma ascends to form an arc of volcanoes parallel to the subduction zone.

<span class="mw-page-title-main">Earth's crust</span> Earths outer shell of rock

Earth's crust is Earth's thin outer shell of rock, referring to less than 1% of Earth's radius and volume. It is the top component of the lithosphere, a division of Earth's layers that includes the crust and the upper part of the mantle. The lithosphere is broken into tectonic plates whose motion allows heat to escape from the interior of the Earth into space.

<span class="mw-page-title-main">Continental collision</span> Phenomenon in which mountains are produced on the boundaries of converging tectonic plates

In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth.

<span class="mw-page-title-main">Supercontinent cycle</span> Quasi-periodic aggregation and dispersal of Earths continental crust

The supercontinent cycle is the quasi-periodic aggregation and dispersal of Earth's continental crust. There are varying opinions as to whether the amount of continental crust is increasing, decreasing, or staying about the same, but it is agreed that the Earth's crust is constantly being reconfigured. One complete supercontinent cycle is said to take 300 to 500 million years. Continental collision makes fewer and larger continents while rifting makes more and smaller continents.

<span class="mw-page-title-main">Accretion (geology)</span> Geological process by which material is added to a tectonic plate at a subduction zone

Accretion, in geology, is a process by which material is added to a tectonic plate at a subduction zone, frequently on the edge of existing continental landmasses. The added material may be sediment, volcanic arcs, seamounts, oceanic crust or other igneous features.

<span class="mw-page-title-main">Basement (geology)</span> Metamorphic or igneous rocks below a sedimentary platform or cover

In geology, basement and crystalline basement are crystalline rocks lying above the mantle and beneath all other rocks and sediments. They are sometimes exposed at the surface, but often they are buried under miles of rock and sediment. The basement rocks lie below a sedimentary platform or cover, or more generally any rock below sedimentary rocks or sedimentary basins that are metamorphic or igneous in origin. In the same way, the sediments or sedimentary rocks on top of the basement can be called a "cover" or "sedimentary cover".

A continental arc is a type of volcanic arc occurring as an "arc-shape" topographic high region along a continental margin. The continental arc is formed at an active continental margin where two tectonic plates meet, and where one plate has continental crust and the other oceanic crust along the line of plate convergence, and a subduction zone develops. The magmatism and petrogenesis of continental crust are complicated: in essence, continental arcs reflect a mixture of oceanic crust materials, mantle wedge and continental crust materials.

<span class="mw-page-title-main">Earth's crustal evolution</span>

Earth's crustal evolution involves the formation, destruction and renewal of the rocky outer shell at that planet's surface.

<span class="mw-page-title-main">Dharwar Craton</span> Part of the Indian Shield in south India

The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered as the oldest part of the Indian peninsula.

References

  1. Fairbridge, Rhodes W., ed. (1967). The Encyclopedia of Atmospheric Sciences and Astrogeology. New York: Reinhold Publishing. p. 323. OCLC   430153.
  2. Davis, George H.; Reynolds, Stephen J.; Kluth, Charles F. (2012). "Nature of Structural Geology". Structural Geology of Rocks and Regions (3rd ed.). John Wiley & Sons. p. 18. ISBN   978-0-471-15231-6.
  3. McGuire, Thomas (2005). "Earthquakes and Earth's Interior". Earth Science: The Physical Setting. AMSCO School Publications Inc. pp. 182–184. ISBN   978-0-87720-196-0.
  4. Rudnick, R.L.; Gao, S. (1 January 2014). "Composition of the Continental Crust". Treatise on Geochemistry. pp. 1–51. doi:10.1016/B978-0-08-095975-7.00301-6. ISBN   9780080983004.
  5. Christensen, Nikolas I.; Mooney, Walter D. (1995). "Seismic velocity structure and composition of the continental crust: A global view". Journal of Geophysical Research: Solid Earth . 100 (B6): 9761–9788. Bibcode:1995JGR...100.9761C. doi:10.1029/95JB00259. ISSN   2156-2202.
  6. Mechanism of Continental Crustal Growth
  7. 1 2 Cogley 1984.
  8. Hawkesworth et al. 2010.
  9. Mortimer, Nick; Campbell, Hamish J. (2017). "Zealandia: Earth's Hidden Continent". GSA Today . 27: 27–35. doi:10.1130/GSATG321A.1. Archived from the original on 17 February 2017.
  10. Waggoner, Ben; Collins, Allen. "The Cambrian Period". University of California Museum of Paleontology . Retrieved 30 November 2013.
  11. Klein, Benjamin; Jagoutz, Oliver (1 January 2018). "On the importance of crystallization-differentiation for the generation of SiO2-rich melts and the compositional build-up of arc (and continental) crust". American Journal of Science . 318 (1): 29–63. Bibcode:2018AmJS..318...29J. doi:10.2475/01.2018.03. ISSN   1945-452X. S2CID   134674805.
  12. 1 2 Hart, P. J. (1969). Earth's Crust and Upper Mantle. American Geophysical Union. pp. 13–15. ISBN   978-0-87590-013-1.
  13. 1 2 McCann, T. (2008). The Geology of Central Europe: Volume 1: Precambrian and Palaeozoic. London: The Geological Society. p. 22. ISBN   978-1-86239-245-8.
  14. 1 2 Armstrong 1991.
  15. Taylor & McLennan 2009.
  16. Condie 2002.
  17. "World's oldest ocean crust dates back to ancient supercontinent".
  18. Bowring & Williams 1999.
  19. Saal et al. 1998.
  20. Clift & Vannuchi 2004.
  21. von Huene & Scholl 1991.
  22. Taylor & McLennan 1995.
  23. Butler 2011, See graphic.

Bibliography