Partial melting

Last updated

Partial melting occurs when only a portion of a solid is melted. For mixed substances, such as a rock containing several different minerals or a mineral that displays solid solution, this melt can be different from the bulk composition of the solid. Partial melting occurs where the solidus and liquidus temperatures are different. For single minerals this can happen when they exhibit solid solution, for example in olivines between iron and magnesium. In rocks made up of several different minerals, some will melt at lower temperatures than others.


Partial melting of the mantle

Diagram showing the physical processes inside the Earth that lead to the generation of magma. A to D are different plate tectonic settings. The plots above show the resulting perturbations in the pressure and temperature of Earth's geothermal gradient. Partial melting asthenosphere EN.svg
Diagram showing the physical processes inside the Earth that lead to the generation of magma. A to D are different plate tectonic settings. The plots above show the resulting perturbations in the pressure and temperature of Earth's geothermal gradient.

Melting in the mantle requires one of three possible events to occur: an increase in temperature, a decrease in pressure, or the addition of volatiles to the system (a change in composition). [1]


In the case of raising the temperature, mantle melting will only occur if the mantle is heated past the normal geotherm. It is believed that heat flux from the core and lower mantle is responsible for increasing the temperature of the upper mantle. Local perturbations of the geothermal gradient, such as hotspots, are not well understood but are considered to be a likely heat source for the mantle.The decay of radioactive elements, though considered to be one of the simplest ways of generating heat in the mantle, is not realistically responsible for mantle melting, as it would take over 10 million years for the radioactive decay of K, U and Th to increase the temperature of peridotite by 1 degree Celsius. Furthermore, even if this process did generate a small fraction of melt, the radioactive elements would concentrate in the melt and escape the system, ultimately halting the process of melt generation. [1]


Melting of a substance exhibiting solid solution, with a bulk composition of CB. As the temperature rises, the solid follows the blue path, and begins melting at temperature TA. The initial liquid produced has the composition CL, and its composition follows the red path. At temperature TB the whole solid has melted. Partial Melting Phase Diagram.svg
Melting of a substance exhibiting solid solution, with a bulk composition of CB. As the temperature rises, the solid follows the blue path, and begins melting at temperature TA. The initial liquid produced has the composition CL, and its composition follows the red path. At temperature TB the whole solid has melted.

Melting in the mantle can also occur if there is a sufficient drop in pressure in the system at a given temperature. In order to decrease pressure, mantle rocks must rise to shallower levels, while experiencing a minimal loss of heat to the surroundings. This process can be referred to as adiabatic if the heat loss is zero. As the mass of mantle rock continues to rise through the Earth’s layers, it follows a P-T path that may eventually cross the solidus, initiating melting. This melting process is known as decompression melting. [1]

Addition of volatiles

The presence of volatiles (particularly H2O and CO2) has the potential to significantly reduce solidus temperatures of a given system. This allows for melt to be generated at lower temperatures than otherwise predicted, eliminating the need for a change in pressure or temperature conditions of the system. However, the mantle typically has a very low volatile content and this can limit the amount of melt generated. Partial melting is an important process in geology with respect to the chemical differentiation of crustal rocks. On the Earth, partial melting of the mantle at mid-ocean ridges produces oceanic crust, and partial melting of the mantle and oceanic crust at subduction zones creates continental crust. In all these places partial melting is often associated with volcanism, although some melts do not make it to the surface. Partial melts are thought to play an important role in enriching old parts of the continental lithosphere in incompatible elements. [2] Partial melts produced at depth move upwards due to the compaction of the surrounding matrix. [1]

Related Research Articles

Granite common type of intrusive, felsic, igneous rock with granular structure

Granite is a common type of felsic intrusive igneous rock that is granular and phaneritic in texture. Granites can be predominantly white, pink, or gray in color, depending on their mineralogy. The word "granite" comes from the Latin granum, a grain, in reference to the coarse-grained structure of such a holocrystalline rock. Strictly speaking, granite is an igneous rock with between 20% and 60% quartz by volume, and at least 35% of the total feldspar consisting of alkali feldspar, although commonly the term "granite" is used to refer to a wider range of coarse-grained igneous rocks containing quartz and feldspar.

Magma Mixture of molten or semi-molten rock, volatiles and solids that is found beneath the surface of the Earth

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles. Magma is produced by melting of the mantle or the crust at various tectonic settings, including subduction zones, continental rift zones, mid-ocean ridges and hotspots. Mantle and crustal melts migrate upwards through the crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During their storage in the crust, magma compositions may be modified by fractional crystallization, contamination with crustal melts, magma mixing, and degassing. Following their ascent through the crust, magmas may feed a volcano or solidify underground to form an intrusion. While the study of magma has historically relied on observing magma in the form of lava flows, magma has been encountered in situ three times during geothermal drilling projects—twice in Iceland, and once in Hawaii.

Rock (geology) A naturally occurring solid aggregate of one or more minerals or mineraloids

A rock is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition and the way in which it is formed. Rocks are usually grouped into three main groups: igneous rocks, metamorphic rocks and sedimentary rocks. Rocks form the Earth's outer solid layer, the crust.

Metamorphism The change of minerals in pre-existing rocks without melting into liquid magma

Metamorphism is the change of minerals or geologic texture in pre-existing rocks (protoliths), without the protolith melting into liquid magma. The change occurs primarily due to heat, pressure, and the introduction of chemically active fluids. The chemical components and crystal structures of the minerals making up the rock may change even though the rock remains a solid. Changes at or just beneath Earth's surface due to weathering or diagenesis are not classified as metamorphism. Metamorphism typically occurs between diagenesis, and melting (~850°C).

Planetary differentiation

In planetary science, planetary differentiation is the process of separating out different constituents of a planetary body as a consequence of their physical or chemical behavior, where the body develops into compositionally distinct layers; the denser materials of a planet sink to the center, while less dense materials rise to the surface, generally in a magma ocean. Such a process tends to create a core and mantle. Sometimes a chemically distinct crust forms on top of the mantle. The process of planetary differentiation has occurred on planets, dwarf planets, the asteroid 4 Vesta, and natural satellites.

Andesite An intermediate volcanic rock

Andesite ( or ) is an extrusive igneous volcanic rock of intermediate composition, with aphanitic to porphyritic texture. In a general sense, it is the intermediate type between basalt and rhyolite, and ranges from 57 to 63% silicon dioxide (SiO2) as illustrated in TAS diagrams. The mineral assemblage is typically dominated by plagioclase plus pyroxene or hornblende. Magnetite, zircon, apatite, ilmenite, biotite, and garnet are common accessory minerals. Alkali feldspar may be present in minor amounts. The quartz-feldspar abundances in andesite and other volcanic rocks are illustrated in QAPF diagrams.

Migmatite A mixture of metamorphic rock and igneous rock

Migmatite is a composite rock found in medium and high-grade metamorphic environments. It consists of two, or more constituents often layered repetitively; one layer was formerly paleosome, a metamorphic rock that was reconstituted subsequently by partial melting; the alternate layer has a pegmatitic, aplitic, granitic or generally plutonic appearance. Commonly, migmatites occur below deformed metamorphic rocks that represent the base of eroded mountain chains, commonly within Precambrian cratonic blocks,

Peridotite A coarse-grained ultramafic igneous rock

Peridotite is a dense, coarse-grained igneous rock consisting mostly of the minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from the Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

Eclogite A dense, mafic metamorphic rock

Eclogite is a mafic metamorphic rock. Eclogite forms at pressures greater than those typical of the crust of the Earth. An unusually dense rock, eclogite can play an important role in driving convection within the solid Earth.

Rock cycle Transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous

The rock cycle is a basic concept in geology that describes transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. Each rock type is altered when it is forced out of its equilibrium conditions. For example, an igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and change as they encounter new environments. The rock cycle explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.

Anatexis refers to the partial melting of rocks. Traditionally, anatexis is used specifically to discuss the partial melting of crustal rocks, while the generic term "partial melting" refers to the partial melting of all rocks, in both the crust and mantle.

In geology, igneous differentiation, or magmatic differentiation, is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process, cooling, emplacement, or eruption.

Compatibility (geochemistry) measure of how readily a particular trace element substitutes for a major element within a mineral. Compatibility of an ion is controlled by two things: its valence and its ionic radius

Compatibility is a term used by geochemists to describe how elements partition themselves in the solid and melt within Earth's mantle. In geochemistry, compatibility is a measure of how readily a particular trace element substitutes for a major element within a mineral.

Fractional crystallization (geology) One of the main processes of magmatic differentiation

Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within crust and mantle of a rocky planetary body, such as the Earth. It is important in the formation of igneous rocks because it is one of the main processes of magmatic differentiation. Fractional crystallization is also important in the formation of sedimentary evaporite rocks.

Igneous rock Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or lava. The magma can be derived from partial melts of existing rocks in either a planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses. Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust.

In igneous petrology and volcanology, flux melting occurs when water and other volatile components are added to hot solid rock. In engineering and metallurgy, flux is a substance, such as salt, that produces a low melting point mixture with a metal oxide. In the same way, the addition of water and other volatile compounds to rocks composed of silicate minerals lowers the melting temperature of those rocks.

Subduction zone metamorphism Changes of rock due to pressure and heat near a subduction zone

A subduction zone is a region of the earth's crust where one tectonic plate moves under another tectonic plate; oceanic crust gets recycled back into the mantle and continental crust gets created by the formation of arc magmas. Arc magmas account for more than 20% of terrestrially produced magmas and are produced by the dehydration of minerals within the subducting slab as it descends into the mantle and are accreted onto the base of the overriding continental plate. Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process creates and destroys water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding the timing and conditions in which these dehydration reactions occur, is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust.

The Deep Crustal Hot Zone (DCHZ), or just deep hot zone, is a zone in the lower crust where hot mantle material intrudes. In a volcanic arc setting, hot, molten material from the mantle may intrude the lower crust. This hot material generates a new, more evolved melt in this area of the crust, which may collect and migrate upwards towards the upper crust. Here, it would collect in a magma chamber and later erupt.


Tonalite-trondhjemite-granodiorite rocks or TTG rocks are intrusive rocks with typical granitic composition but containing only a small portion of potassium feldspar. Tonalite, trondhjemite, and granodiorite often occur together in geological records, indicating similar petrogenetic processes. Post Archean TTG rocks are present in arc-related batholiths, as well as in ophiolites, while Archean TTG rocks are major components of Archean cratons.

Crystal mush

A crystal mush is a magmatic body which contains a significant amount of crystals suspended in the liquid phase (melt). As the crystal fraction makes up less than half of the volume, there is no rigid large-scale three-dimensional network as in solids. As such, their rheological behavior mirrors that of absolute liquids. Within a single crystal mush, there is grading to a higher solid fraction towards the margins of the pluton while the liquid fraction increases towards the uppermost portions, forming a liquid lens at the top. Furthermore, depending on depth of placement crystal mushes are likely to contain a larger portion of crystals at greater depth in the crust than at shallower depth, as melting occurs from the adiabatic decompression of the magma as it rises, this is particularly the case for mid-oceanic ridges.


  1. 1 2 3 4 Winter, John D. (John DuNann) (2015). Principles of igneous and metamorphic petrology. Pearson India Education Services. ISBN   9789332550407. OCLC   931961923.
  2. Gibson, Sally A.; Jacqueline Malarkey; Jason A. Day (2008-10-22). "Melt Depletion and Enrichment beneath the Western Kaapvaal Craton: Evidence from Finsch Peridotite Xenoliths". Journal of Petrology. 49 (10): egn048. doi:10.1093/petrology/egn048 . Retrieved 2009-05-22.