Magma chamber

Last updated

11 - magma chamber Vulcanian Eruption-numbers.svg
11 – magma chamber

A magma chamber is a large pool of liquid rock beneath the surface of the Earth. The molten rock, or magma, in such a chamber is less dense than the surrounding country rock, which produces buoyant forces on the magma that tend to drive it upwards. [1] If the magma finds a path to the surface, then the result will be a volcanic eruption; consequently, many volcanoes are situated over magma chambers. [2] These chambers are hard to detect deep within the Earth, and therefore most of those known are close to the surface, commonly between 1 km and 10 km down. [3]

Contents

Dynamics of magma chambers

Magma chambers above a subducting plate Subduction-en.svg
Magma chambers above a subducting plate

Magma rises through cracks from beneath and across the crust because it is less dense than the surrounding rock. When the magma cannot find a path upwards it pools into a magma chamber. These chambers are commonly built up over time, [4] [5] by successive horizontal [6] or vertical [7] magma injections. The influx of new magma causes reaction of pre-existing crystals [8] and the pressure in the chamber to increase.

The residing magma starts to cool, with the higher melting point components such as olivine crystallizing out of the solution, particularly near to the cooler walls of the chamber, and forming a denser conglomerate of minerals which sinks (cumulative rock). [9] Upon cooling, new mineral phases saturate and the rock type changes (e.g. fractional crystallization), typically forming (1) gabbro, diorite, tonalite and granite or (2) gabbro, diorite, syenite and granite. If magma resides in a chamber for a long period, then it can become stratified with lower density components rising to the top and denser materials sinking. Rocks accumulate in layers, forming a layered intrusion. [10] Any subsequent eruption may produce distinctly layered deposits; for example, the deposits from the 79 AD eruption of Mount Vesuvius include a thick layer of white pumice from the upper portion of the magma chamber overlaid with a similar layer of grey pumice produced from material erupted later from lower in the chamber.

Another effect of the cooling of the chamber is that the solidifying crystals will release the gas (primarily steam) previously dissolved when they were liquid, causing the pressure in the chamber to rise, possibly sufficiently to produce an eruption. Additionally, the removal of the lower melting point components will tend to make the magma more viscous (by increasing the concentration of silicates). Thus, stratification of a magma chamber may result in an increase in the amount of gas within the magma near the top of the chamber, [11] and also make this magma more viscous, potentially leading to a more explosive eruption than would be the case had the chamber not become stratified.

Supervolcano eruptions are possible only when an extraordinarily large magma chamber forms at a relatively shallow level in the crust. However, the rate of magma production in tectonic settings that produce supervolcanoes is quite low, around 0.002 km3 year−1, so that accumulation of sufficient magma for a supereruption takes 105 to 106 years. This raises the question of why the buoyant silicic magma does not break through to the surface more frequently in relatively small eruptions. The combination of regional extension, which lowers the maximum attainable overpressure on the chamber roof, and a large magma chamber with warm walls, which has a high effective viscoelasticity, may suppress rhyolite dike formation and allow such large chambers to fill with magma. [12]

If the magma is not vented to the surface in a volcanic eruption, it will slowly cool and crystallize at depth to form an intrusive igneous body, one, for example, composed of granite or gabbro (see also pluton).

Often, a volcano may have a deep magma chamber many kilometers down, which supplies a shallower chamber near the summit. The location of magma chambers can be mapped using seismology: seismic waves from earthquakes move more slowly through liquid rock than solid, allowing measurements to pinpoint the regions of slow movement which identify magma chambers. [13]

As a volcano erupts, surrounding rock will collapse into the emptying chamber. If the chamber's size is reduced considerably, the resulting depression at the surface can form a caldera. [14]

Examples

In Iceland, Thrihnukagigur, discovered in 1974 by cave explorer Árni B. Stefánsson and opened for tourism in 2012, is the only volcano in the world where visitors can take an elevator and safely descend into the magma chamber. [15]

See also

Related Research Articles

A caldera is a large cauldron-like hollow that forms shortly after the emptying of a magma chamber in a volcano eruption. When large volumes of magma are erupted over a short time, structural support for the rock above the magma chamber is gone. The ground surface then collapses into the emptied or partially emptied magma chamber, leaving a large depression at the surface. Although sometimes described as a crater, the feature is actually a type of sinkhole, as it is formed through subsidence and collapse rather than an explosion or impact. Compared to the thousands of volcanic eruptions that occur each century, the formation of a caldera is a rare event, occurring only a few times per century. Only seven caldera-forming collapses are known to have occurred between 1911 and 2016. More recently, a caldera collapse occurred at Kīlauea, Hawaii in 2018.

<span class="mw-page-title-main">Gabbro</span> Coarse-grained mafic intrusive rock

Gabbro is a phaneritic (coarse-grained), mafic intrusive igneous rock formed from the slow cooling of magnesium-rich and iron-rich magma into a holocrystalline mass deep beneath the Earth's surface. Slow-cooling, coarse-grained gabbro is chemically equivalent to rapid-cooling, fine-grained basalt. Much of the Earth's oceanic crust is made of gabbro, formed at mid-ocean ridges. Gabbro is also found as plutons associated with continental volcanism. Due to its variant nature, the term gabbro may be applied loosely to a wide range of intrusive rocks, many of which are merely "gabbroic". By rough analogy, gabbro is to basalt as granite is to rhyolite.

<span class="mw-page-title-main">Magma</span> Hot semifluid material found beneath the surface of Earth

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles.

<span class="mw-page-title-main">Volcanism</span> Eruption of molten rock onto Earths surface

Volcanism, vulcanism or volcanicity is the phenomenon of eruption of molten rock (magma) onto the surface of the Earth or a solid-surface planet or moon, where lava, pyroclastics, and volcanic gases erupt through a break in the surface called a vent. It includes all phenomena resulting from and causing magma within the crust or mantle of the body, to rise through the crust and form volcanic rocks on the surface. Magmas that reach the surface and solidify form extrusive landforms.

<span class="mw-page-title-main">Dacite</span> Volcanic rock intermediate in composition between andesite and rhyolite

Dacite is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

<span class="mw-page-title-main">Andesite</span> Type of volcanic rock

Andesite is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

<span class="mw-page-title-main">Peridotite</span> Coarse-grained ultramafic igneous rock type

Peridotite ( PERR-ih-doh-tyte, pə-RID-ə-) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

<span class="mw-page-title-main">Sill (geology)</span> Tabular intrusion between older layers of rock

In geology, a sill is a tabular sheet intrusion that has intruded between older layers of sedimentary rock, beds of volcanic lava or tuff, or along the direction of foliation in metamorphic rock. A sill is a concordant intrusive sheet, meaning that it does not cut across preexisting rock beds. Stacking of sills builds a sill complex and a large magma chamber at high magma flux. In contrast, a dike is a discordant intrusive sheet, which does cut across older rocks. Sills are fed by dikes, except in unusual locations where they form in nearly vertical beds attached directly to a magma source. The rocks must be brittle and fracture to create the planes along which the magma intrudes the parent rock bodies, whether this occurs along preexisting planes between sedimentary or volcanic beds or weakened planes related to foliation in metamorphic rock. These planes or weakened areas allow the intrusion of a thin sheet-like body of magma paralleling the existing bedding planes, concordant fracture zone, or foliations.

<span class="mw-page-title-main">Komatiite</span> Ultramafic mantle-derived volcanic rock

Komatiite is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% magnesium oxide (MgO). It is classified as a 'picritic rock'. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite was named for its type locality along the Komati River in South Africa, and frequently displays spinifex texture composed of large dendritic plates of olivine and pyroxene.

<span class="mw-page-title-main">Granophyre</span> Subvolcanic rock that contains quartz and alkali feldspar in characteristic angular intergrowths

Granophyre is a subvolcanic rock that contains quartz and alkali feldspar in characteristic angular intergrowths such as those in the accompanying image.

<span class="mw-page-title-main">Layered intrusion</span>

A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around 100 km2 (39 sq mi) to over 50,000 km2 (19,000 sq mi) and several hundred metres to over one kilometre (3,300 ft) in thickness. While most layered intrusions are Archean to Proterozoic in age, they may be any age such as the Cenozoic Skaergaard intrusion of east Greenland or the Rum layered intrusion in Scotland. Although most are ultramafic to mafic in composition, the Ilimaussaq intrusive complex of Greenland is an alkalic intrusion.

<span class="mw-page-title-main">Cumulate rock</span> Igneous rocks formed by the accumulation of crystals from a magma either by settling or floating.

Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance.

In geology, igneous differentiation, or magmatic differentiation, is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process, cooling, emplacement, or eruption. The sequence of magmas produced by igneous differentiation is known as a magma series.

<span class="mw-page-title-main">Igneous intrusion</span> Body of intrusive igneous rocks

In geology, an igneous intrusion is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and compositions, illustrated by examples like the Palisades Sill of New York and New Jersey; the Henry Mountains of Utah; the Bushveld Igneous Complex of South Africa; Shiprock in New Mexico; the Ardnamurchan intrusion in Scotland; and the Sierra Nevada Batholith of California.

<span class="mw-page-title-main">Ring dike</span> Type of intrusive igneous body

A ring dike or ring dyke is an intrusive igneous body that is circular, oval or arcuate in plan and has steep contacts. While the widths of ring dikes differ, they can be up to several thousand meters. The most commonly accepted method of ring dike formation is directly related to collapse calderas.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

<span class="mw-page-title-main">Rum layered intrusion</span> Intrusion in Scotland

The Rum layered intrusion is located in Scotland, on the island of Rùm. It is a mass of intrusive rock, of mafic-ultramafic composition, the remains of the eroded, solidified magma chamber of an extinct volcano that was active during the Palaeogene Period. It is associated with the nearby Skye intrusion and Skye, Mull and Egg lavas. It was emplaced 60 million years ago above the Iceland hotspot.

The lower oceanic crust is the lower part of the oceanic crust and represents the major part of it. It is generally located 4–8 km below the ocean floor and the major lithologies are mafic which derive from melts rising from the Earth's mantle. This part of the oceanic crust is an important zone for processes such as melt accumulation and melt modification. And the recycling of this part of the oceanic crust, together with the upper mantle has been suggested as a significant source component for tholeiitic magmas in Hawaiian volcanoes. Although the lower oceanic crust builds the link between the mantle and the MORB, and can't be neglected for the understanding of MORB evolution, the complex processes operating in this zone remain unclear and there is an ongoing debate in Earth Sciences about this. It is 6KM long.

<span class="mw-page-title-main">Crystal mush</span>

A crystal mush is magma that contains a significant amount of crystals suspended in the liquid phase (melt). As the crystal fraction makes up less than half of the volume, there is no rigid large-scale three-dimensional network as in solids. As such, their rheological behavior mirrors that of absolute liquids.

Catherine Jeanne Annen is a French geologist at the Czech Academy of Sciences. Her research considers igneous bodies, volcanic eruptions. and exploration for geothermal energy. She was awarded the 2022 Geological Society of London Bigsby Medal.

References

  1. Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 28–32. ISBN   9780521880060.
  2. "Forensic Probe of Bali's Great Volcano". Eos. 12 February 2019. Retrieved 25 November 2020.
  3. Dahren, Börje; Troll, Valentin R.; Andersson, Ulf B.; Chadwick, Jane P.; Gardner, Màiri F.; Jaxybulatov, Kairly; Koulakov, Ivan (1 April 2012). "Magma plumbing beneath Anak Krakatau volcano, Indonesia: evidence for multiple magma storage regions". Contributions to Mineralogy and Petrology. 163 (4): 631–651. Bibcode:2012CoMP..163..631D. doi:10.1007/s00410-011-0690-8. ISSN   1432-0967. S2CID   52064179.
  4. Glazner, A.F.; Bartley, J.M.; Coleman, D.S.; Gray, W.; Taylor, Z. (2004). "Are plutons assembled over millions of years by amalgamation from small magma chambers?". GSA Today. 14 (4/5): 4–11. doi: 10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2 .
  5. Leuthold, Julien (2012). "Time resolved construction of a bimodal laccolith (Torres del Paine, Patagonia)". Earth and Planetary Science Letters. 325–326: 85–92. Bibcode:2012E&PSL.325...85L. doi:10.1016/j.epsl.2012.01.032.
  6. Leuthold, Julien; Müntener, Othmar; Baumgartner, Lukas; Putlitz, Benita (2014). "Petrological constraints on the recycling of mafic crystal mushes and intrusion of braided sills in the Torres del Paine Mafic Complex (Patagonia)" (PDF). Journal of Petrology. 55 (5): 917–949. doi:10.1093/petrology/egu011. hdl: 20.500.11850/103136 .
  7. Allibon, J.; Ovtcharova, M.; Bussy, F.; Cosca, M.; Schaltegger, U.; Bussien, D.; Lewin, E. (2011). "The lifetime of an ocean island volcano feeder zone: constraints from U–Pb on coexisting zircon and baddeleyite, and 40Ar/39Ar age determinations (Fuerteventura, Canary Islands)". Can. J. Earth Sci. 48 (2): 567–592. doi:10.1139/E10-032.
  8. Leuthold J, Blundy JD, Holness MB, Sides R (2014). "Successive episodes of reactive liquid flow through a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)". Contrib Mineral Petrol. 167 (1): 1021. Bibcode:2014CoMP..168.1021L. doi:10.1007/s00410-014-1021-7. S2CID   129584032.
  9. Emeleus, C. H.; Troll, V. R. (1 August 2014). "The Rum Igneous Centre, Scotland". Mineralogical Magazine. 78 (4): 805–839. Bibcode:2014MinM...78..805E. doi: 10.1180/minmag.2014.078.4.04 . ISSN   0026-461X.
  10. McBirney AR (1996). "The Skaergaard intrusion". In Cawthorn RG (ed.). Layered intrusions. Developments in petrology. Vol. 15. pp. 147–180. ISBN   9780080535401.
  11. TROLL, V. R. (1 February 2002). "Magma Mixing and Crustal Recycling Recorded in Ternary Feldspar from Compositionally Zoned Peralkaline Ignimbrite A', Gran Canaria, Canary Islands". Journal of Petrology. 43 (2): 243–270. doi: 10.1093/petrology/43.2.243 . ISSN   1460-2415.
  12. Jellinek, A. Mark; DePaolo, Donald J. (1 July 2003). "A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions". Bulletin of Volcanology. 65 (5): 363–381. Bibcode:2003BVol...65..363J. doi:10.1007/s00445-003-0277-y. S2CID   44581563.
  13. Cashman, K. V.; Sparks, R. S. J. (2013). "How volcanoes work: a 25 year perspective". Geological Society of America Bulletin. 125 (5–6): 664. Bibcode:2013GSAB..125..664C. doi:10.1130/B30720.1.
  14. Troll, Valentin R.; Emeleus, C. Henry; Donaldson, Colin H. (1 November 2000). "Caldera formation in the Rum Central Igneous Complex, Scotland". Bulletin of Volcanology. 62 (4): 301–317. Bibcode:2000BVol...62..301T. doi:10.1007/s004450000099. ISSN   1432-0819. S2CID   128985944.
  15. Anita, Isalska. "Only in Iceland: Descending into a volcano's magma chamber - CNN.com". CNN . Retrieved 15 June 2016.