Tunnel construction

Last updated
Tunnel Construction Munchen Marienplatz Tunnelerweiterung.jpg
Tunnel Construction

Tunnels are dug in types of materials varying from soft clay to hard rock. The method of tunnel construction depends on such factors as the ground conditions, the ground water conditions, the length and diameter of the tunnel drive, the depth of the tunnel, the logistics of supporting the tunnel excavation, the final use and shape of the tunnel and appropriate risk management. Tunnel construction is a subset of underground construction.

Contents

There are three basic types of tunnel construction in common use:

History

Cost

In 2017 experiences show that city subway TBM tunnels cost approximately 500 Million EUR per kilometer. In Switzerland a kilometer of motorway tunnel was roughly calculated at 300 Million CHF, at the time 200 Million Eur. The undersea tunnel between Denmark and Germany is planned for 425 Million per km, in 2015. [1] [2] [3]

Cut-and-cover

Cut-and-cover construction of the Paris Metro in France Paris Metro construction 03300288-3.jpg
Cut-and-cover construction of the Paris Métro in France

Cut-and-cover is a simple method of construction for shallow tunnels where a trench is excavated and roofed over with an overhead support system strong enough to carry the load of what is to be built above the tunnel. Two basic forms of cut-and-cover tunnelling are available:

Shallow tunnels are often of the cut-and-cover type (if under water, of the immersed-tube type), while deep tunnels are excavated, often using a tunnelling shield. For intermediate levels, both methods are possible.

Large cut-and-cover boxes are often used for underground metro stations, such as Canary Wharf tube station in London. This construction form generally has two levels, which allows economical arrangements for ticket hall, station platforms, passenger access and emergency egress, ventilation and smoke control, staff rooms, and equipment rooms. The interior of Canary Wharf station has been likened to an underground cathedral, owing to the sheer size of the excavation. This contrasts with many traditional stations on London Underground, where bored tunnels were used for stations and passenger access. Nevertheless, the original parts of the London Underground network, the Metropolitan and District Railways, were constructed using cut-and-cover. These lines pre-dated electric traction and the proximity to the surface was useful to ventilate the inevitable smoke and steam.

A major disadvantage of cut-and-cover is the widespread disruption generated at the surface level during construction. This, and the availability of electric traction, brought about London Underground's switch to bored tunnels at a deeper level towards the end of the 19th century.

Boring machines

A workman is dwarfed by the tunnel boring machine used to excavate the Gotthard Base Tunnel (Switzerland), the world's longest. TBM S-210 Alptransit Faido East.jpg
A workman is dwarfed by the tunnel boring machine used to excavate the Gotthard Base Tunnel (Switzerland), the world's longest.

Tunnel boring machines and associated back-up systems are used to highly automate the entire tunnelling process, reducing tunnelling costs. In certain predominantly urban applications, tunnel boring is viewed as quick and cost effective alternative to laying surface rails and roads. Expensive compulsory purchase of buildings and land, with potentially lengthy planning inquiries, is eliminated. Disadvantages of TBMs arise from their usually large size – the difficulty of transporting the large TBM to the site of tunnel construction, or (alternatively) the high cost of assembling the TBM on-site, often within the confines of the tunnel being constructed.

There are a variety of TBM designs that can operate in a variety of conditions, from hard rock to soft water-bearing ground. Some types of TBMs, the bentonite slurry and earth-pressure balance machines, have pressurised compartments at the front end, allowing them to be used in difficult conditions below the water table. This pressurizes the ground ahead of the TBM cutter head to balance the water pressure. The operators work in normal air pressure behind the pressurised compartment, but may occasionally have to enter that compartment to renew or repair the cutters. This requires special precautions, such as local ground treatment or halting the TBM at a position free from water. Despite these difficulties, TBMs are now preferred over the older method of tunnelling in compressed air, with an air lock/decompression chamber some way back from the TBM, which required operators to work in high pressure and go through decompression procedures at the end of their shifts, much like deep-sea divers.

In February 2010, Aker Wirth delivered a TBM to Switzerland, for the expansion of the Linth–Limmern Power Stations located south of Linthal in the canton of Glarus. The borehole has a diameter of 8.03 metres (26.3 ft). [4] The four TBMs used for excavating the 57-kilometre (35 mi) Gotthard Base Tunnel, in Switzerland, had a diameter of about 9 metres (30 ft). A larger TBM was built to bore the Green Heart Tunnel (Dutch: Tunnel Groene Hart) as part of the HSL-Zuid in the Netherlands, with a diameter of 14.87 metres (48.8 ft). [5] This in turn was superseded by the Madrid M30 ringroad, Spain, and the Chong Ming tunnels in Shanghai, China. All of these machines were built at least partly by Herrenknecht. As of January 2023, the largest TBM by head diameter ever built was the Tuen Mun–Chek Lap Kok TBM, a 17.6-metre (58 ft) diameter machine built by Herrenknecht, for the Tuen Mun-Chek Lap Kok Link in Hong Kong. [6]

Clay-kicking

Clay-kicking is a specialised method developed in the United Kingdom of digging tunnels in strong clay-based soil structures. Unlike previous manual methods of using mattocks which relied on the soil structure to be hard, clay-kicking was relatively silent and hence did not harm soft clay-based structures. The clay-kicker lies on a plank at a 45-degree angle away from the working face and inserts a tool with a cup-like rounded end with the feet. Turning the tool manually, the kicker extracts a section of soil, which is then placed on the waste extract.

Used in Victorian civil engineering, the method found favour in the renewal of Britain's ancient sewerage systems, by not having to remove all property or infrastructure to create a small tunnel system. During the First World War, the system was used by Royal Engineer tunnelling companies to put mines beneath the German Empire lines. The method was virtually silent and so not susceptible to listening methods of detection. [7]

Shafts

1886 illustration showing the ventilation and drainage system of the Mersey railway tunnel Mersey Railway Tunnel - ventilation and drainage machinery.png
1886 illustration showing the ventilation and drainage system of the Mersey railway tunnel

A temporary access shaft is sometimes necessary during the excavation of a tunnel. They are usually circular and go straight down until they reach the level at which the tunnel is going to be built. A shaft normally has concrete walls and is usually built to be permanent. Once the access shafts are complete, TBMs are lowered to the bottom and excavation can start. Shafts are the main entrance in and out of the tunnel until the project is completed. If a tunnel is going to be long, multiple shafts at various locations may be bored so that entrance to the tunnel is closer to the unexcavated area. [8]

Once construction is complete, construction access shafts are often used as ventilation shafts, and may also be used as emergency exits. [9]

Sprayed concrete techniques

The New Austrian Tunneling Method (NATM) was developed in the 1960s and is the best known of a number of engineering practices that use calculated and empirical measurements to provide safe support to the tunnel lining. The main idea of this method is to use the geological stress of the surrounding rock mass to stabilize the tunnel, by allowing a measured relaxation and stress reassignment into the surrounding rock to prevent full loads becoming imposed on the supports. Based on geotechnical measurements, an optimal cross section is computed. The excavation is protected by a layer of sprayed concrete, commonly referred to as shotcrete. Other support measures can include steel arches, rock bolts and mesh. Technological developments in sprayed concrete technology have resulted in steel and polypropylene fibres being added to the concrete mix to improve lining strength. This creates a natural load-bearing ring, which minimizes the rock's deformation.

Illowra Battery utility tunnel, Port Kembla. One of many bunkers south of Sydney. Hill 60 illowra battery port kembla.jpg
Illowra Battery utility tunnel, Port Kembla. One of many bunkers south of Sydney.

By special monitoring the NATM method is flexible, even at surprising changes of the geomechanical rock consistency during the tunneling work. The measured rock properties lead to appropriate tools for tunnel strengthening. In the last decades also soft ground excavations up to 10 kilometres (6.2 mi) became usual.

Pipe jacking

In pipe jacking , hydraulic jacks are used to push specially made pipes through the ground behind a TBM or shield. This method is commonly used to create tunnels under existing structures, such as roads or railways. Tunnels constructed by pipe jacking are normally small diameter bores with a maximum size of around 3.2 metres (10 ft).

Box jacking

Box jacking is similar to pipe jacking, but instead of jacking tubes, a box-shaped tunnel is used. Jacked boxes can be a much larger span than a pipe jack, with the span of some box jacks in excess of 20 metres (66 ft). A cutting head is normally used at the front of the box being jacked, and spoil removal is normally by excavator from within the box. Recent developments of the Jacked Arch and Jacked deck have enabled longer and larger structures to be installed to close accuracy. The 126m long 20m clear span underpass below the high speed rail lines at Cliffsend in Kent, UK.

Underwater tunnels

Shark tunnel at the Georgia Aquarium Georgiaaquariumtunnel.jpg
Shark tunnel at the Georgia Aquarium

There are also several approaches to underwater tunnels, the two most common being bored tunnels or immersed tubes, examples are Bjørvika Tunnel and Marmaray. Submerged floating tunnels are a novel approach under consideration; however, no such tunnels have been constructed to date.

Land tunnels

A new kind of tunnels is used to reduce the environmental impact of motorways or railways: land tunnels. These are not underground tunnels, but built at ground level. The urban area next to the tunnel can be raised with ground or buildings (for instance parking facilities) to improve the integration of the tunnel in the immediate area. A good early example of such a land tunnel is the A2 motorway tunnel at Leidsche Rijn, near the Dutch city of Utrecht. [10]

Temporary way

During construction of a tunnel it is often convenient to install a temporary railway, particularly to remove excavated spoil, often narrow gauge so that it can be double track to allow the operation of empty and loaded trains at the same time. The temporary way is replaced by the permanent way at completion, thus explaining the term "Perway".

Enlargement

A utility tunnel in Prague Kolektory Praha, 15.jpg
A utility tunnel in Prague

The vehicles or traffic using a tunnel can outgrow it, requiring replacement or enlargement:

Open building pit

An open building pit consists of a horizontal and a vertical boundary that keeps groundwater and soil out of the pit. There are several potential alternatives and combinations for (horizontal and vertical) building pit boundaries. The most important difference with cut-and-cover is that the open building pit is muted after tunnel construction; no roof is placed.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Underground hard-rock mining</span> Mining techniques used to excavate hard minerals and gems

Underground hard-rock mining refers to various underground mining techniques used to excavate "hard" minerals, usually those containing metals, such as ore containing gold, silver, iron, copper, zinc, nickel, tin, and lead. It also involves the same techniques used to excavate ores of gems, such as diamonds and rubies. Soft-rock mining refers to the excavation of softer minerals, such as salt, coal, and oil sands.

<span class="mw-page-title-main">Tunnel</span> Underground passage made for traffic

A tunnel is an underground or undersea passageway. It is dug through surrounding soil, earth or rock, or laid under water, and is usually completely enclosed except for the two portals common at each end, though there may be access and ventilation openings at various points along the length. A pipeline differs significantly from a tunnel, though some recent tunnels have used immersed tube construction techniques rather than traditional tunnel boring methods.

<span class="mw-page-title-main">Tunnelling shield</span> Protective structure used during the excavation of tunnels

A tunnelling shield is a protective structure used during the excavation of large, human-made tunnels. When excavating through ground that is soft, liquid, or otherwise unstable, there is a potential health and safety hazard to workers and the project itself from falling materials or a cave-in. A tunnelling shield can be used as a temporary support structure. It is usually in place for the short-term from when the tunnel section is excavated until it can be lined with a permanent support structure. The permanent structure may be made up of, depending on the period, bricks, concrete, cast iron, or steel. Although modern shields are commonly cylindrical, the first "shield", designed by Marc Isambard Brunel, was actually a large, rectangular, scaffold-like iron structure with three levels and twelve sections per level, with a solid load-bearing top surface. The structure protected the men from cave-ins as they laboured within it, digging the tunnel out in front of the shield.

<span class="mw-page-title-main">Tunnel boring machine</span> Device used to excavate tunnels

A tunnel boring machine (TBM), also known as a "mole" or a "worm", is a machine used to excavate tunnels. Tunnels are excavated through hard rock, wet or dry soil, or sand, each of which requires specialized technology.

<span class="mw-page-title-main">Dublin Port Tunnel</span>

The Dublin Tunnel, originally and still commonly known as the Port Tunnel, is a road traffic tunnel in Dublin, Ireland, that forms part of the M50 motorway.

<span class="mw-page-title-main">Shaft sinking</span> Process of excavating a vertical or near vertical tunnel from the top down

Shaft mining or shaft sinking is the action of excavating a mine shaft from the top down, where there is initially no access to the bottom. Shallow shafts, typically sunk for civil engineering projects, differ greatly in execution method from deep shafts, typically sunk for mining projects.

<span class="mw-page-title-main">Underground living</span> Living below the grounds surface

Underground living refers to living below the ground's surface, whether in natural or manmade caves or structures. Underground dwellings are an alternative to above-ground dwellings for some home seekers, including those who are looking to minimize impact on the environment. Factories and office buildings can benefit from underground facilities for many of the same reasons as underground dwellings such as noise abatement, energy use, and security.

<span class="mw-page-title-main">Drilling and blasting</span> Excavation method using explosives

Drilling and blasting is the controlled use of explosives and other methods, such as gas pressure blasting pyrotechnics, to break rock for excavation. It is practiced most often in mining, quarrying and civil engineering such as dam, tunnel or road construction. The result of rock blasting is often known as a rock cut.

The Heathrow Cargo Tunnel is a road tunnel in the London Borough of Hillingdon, London, UK that serves London Heathrow Airport.

<span class="mw-page-title-main">Deep foundation</span> Type of foundation

A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.

Metro Tunneling Group or MTG is a Joint Venture (JV) of 5 companies currently working as the main contractor for the Delhi Metro Rail Corporation (DMRC). The 5 companies are DYWIDAG Systems from Germany, Larsen & Toubro from India, Samsung Corporation from South Korea, Ircon International from India, and Shimizu Corporation from Japan. DMRC is the joint venture of Government of India and Government of Delhi.

<span class="mw-page-title-main">Verbindungsbahn (Stuttgart)</span> Railway tunnel in Germany

The name Verbindungsbahn is used in Stuttgart to describe the railway line between the subterranean S-Bahn Stuttgart station at Stuttgart Hauptbahnhof and the tunnel exit at the station in Stuttgart-Österfeld, which connects, via tunnel, the Stuttgart valley and the Filder plateau. The term originates from the planning stages in the 1960s, when similar projects for the S-Bahn München and S-Bahn Rhein-Main were referred to with the same term.

The Inland Feeder is a 44 mi (71 km) high capacity water conveyance system that connects the California State Water Project to the Colorado River Aqueduct and Diamond Valley Lake. The Metropolitan Water District of Southern California designed the system to increase Southern California's water supply reliability in the face of future weather pattern uncertainties, while minimizing the impact on the San Francisco Bay/Sacramento–San Joaquin River Delta environment in Northern California. The feeder takes advantage of large volumes of water when available from Northern California, depositing it in surface storage reservoirs, such as Diamond Valley Lake, and local groundwater basins for use during dry periods and emergencies. This improves the quality of Southern California drinking water by allowing more uniform blending of better quality water from the state project with Colorado River supplies, which has a higher mineral content.

<span class="mw-page-title-main">Station box</span>

A station box is a term in the construction industry: It describes a box-like underground structure for a transportation system, for example a metro or tube station.

<span class="mw-page-title-main">Laird station</span> Future underground LRT station in Toronto, Canada

Laird is an underground light rail transit (LRT) station under construction on Line 5 Eglinton, a new line that is part of the Toronto subway system. It is located in the Leaside neighbourhood in East York at the intersection of Laird Drive and Eglinton Avenue. It is scheduled to open in 2024.

Deep level underground is construction that is 20 m (66 ft) or more below ground and not using the cut-and-cover method, especially train stations, air raid shelters and bunkers, and some tunnels and mines. Cut-and-cover is a simple method of construction for shallow tunnels where a trench is excavated and roofed over with an overhead support structure that is strong enough to carry the load of what is to be built above the tunnel.

<span class="mw-page-title-main">Stepney Green cavern</span> Underground junction where Crossrail splits into two branches

Stepney Green cavern is an underground junction which contains the junction where Crossrail divides into two branches: one to Shenfield and one to Abbey Wood. It is located below Stepney Green Park.

<span class="mw-page-title-main">Tunnel rock recycling</span> Method to utilize rock debris from tunneling

Tunnel rock recycling is a method to process rock debris from tunneling into other usable needs. The most common is for concrete aggregates or as subbase for road building. Crushers and screeners normally used in quarries are stationed at the tunnel site for the purpose which is to crush and screen the rock debris for further use. The largest tunnel rock recycling facility ever to be created was for the construction of the Gotthard Base Tunnel which took 17 years, finishing in 2016. 1/5 of the rock debris excavated for the tunnel was recycled and used as aggregates for the concrete lining inside the tunnel.

The Chiltern Tunnel is a high-speed railway tunnel currently under construction in Buckinghamshire and Hertfordshire, England, and will upon completion carry the High Speed 2 (HS2) railway line under the Chiltern Hills. The twin-bore tunnels, which are 16.04 km long, will be the longest on the HS2 line. Each tunnel will also have additional 220 m (720 ft) entry and 135 m (443 ft) exit perforated concrete portals to reduce sudden changes in air pressure and subsequent noise.

<span class="mw-page-title-main">Euston tunnel</span> Twin-bore tunnel for HS2 railway

Euston tunnel is a tunnel currently planned in London that will carry the High Speed 2 (HS2) railway between Euston railway station and Old Oak Common railway station.

References

  1. Elon Musk on LA subway extension, TED interview, 2017.
  2. Warum 1 Meter Autobahn 300 000 Franken kosten kann, NZZ, 2005-12-13.
  3. Dänisches Parlament beschließt Bau des Ostsee-Tunnels, Der Spiegel, 2015-04-28.
  4. "Tunnels & Tunnelling International". Tunnelsonline.info. Archived from the original on 2012-03-16. Retrieved 2013-04-19.
  5. "The Groene Hart Tunnel". Hslzuid.nl. Archived from the original on September 25, 2009. Retrieved 2013-04-19.
  6. "Bouygues confirms largest tunnel boring machine launch". 9 June 2015.
  7. "Tunnelling". tunnellersmemorial.com. Archived from the original on August 23, 2010. Retrieved 2010-06-20.
  8. United States Army Corps of Engineers. (1978). Tunnels and shafts in rock. Washington, DC: Department of the Army.
  9. Flexi, Peter. "Roof repairs Canberra" . Retrieved 27 September 2022.
  10. van der Hoeven, Frank (2010). "Landtunnel Utrecht at Leidsche Rijn: The conceptualisation of the Dutch multifunctional tunnel". Tunnelling and Underground Space Technology. 25 (5): 508–517. Bibcode:2010TUSTI..25..508V. doi:10.1016/j.tust.2010.03.005.
  11. "Archived copy". Archived from the original on 2016-03-04. Retrieved 2009-04-02.{{cite web}}: CS1 maint: archived copy as title (link)
  12. "Archived copy". Archived from the original on 2016-03-04. Retrieved 2009-04-02.{{cite web}}: CS1 maint: archived copy as title (link)
  13. The Railway Magazine August 2015, p12.