Subsurface utility engineering

Last updated

Subsurface utility engineering (SUE) refers to a branch of engineering that involves managing certain risks associated with utility mapping at appropriate quality levels, utility coordination, utility relocation design and coordination, utility condition assessment, communication of utility data to concerned parties, utility relocation cost estimates, implementation of utility accommodation policies, and utility design. [1]

Contents

The SUE process begins with a work plan that outlines the scope of work, project schedule, levels of service vs. risk allocation and desired delivery method. Non-destructive surface geophysical methods are then leveraged to determine the presence of subsurface utilities and to mark their horizontal position on the ground surface. Vacuum excavation techniques are employed to expose and record the precise horizontal and vertical position of the assets. This information is then typically presented in CAD format or a GIS-compatible map. A conflict matrix is also created to evaluate and compare collected utility information with project plans, identify conflicts and propose solutions. The concept of SUE is gaining popularity worldwide as a framework to mitigate costs associated with project redesign and construction delays and to avoid risk and liability that can result from damaged underground utilities.

History

The practice of collecting, recording and managing subsurface data has historically been widely unregulated. In response to this challenge, in 2003, The American Society of Civil Engineers (ASCE) developed standard 38-02: Guideline for the Collection and Depiction of Existing Subsurface Utility Data, which defined the practice of SUE. Many countries followed the U.S. lead by creating similar standards including Malaysia, Canada, Australia, Great Britain and most recently, Ecuador. Developed and refined over the last 20 years, SUE classifies information according to quality levels with an objective to vastly improve data reliability. This provides project owners and engineers with a benchmark to determine the integrity of utility data at the outset of an infrastructure project.

Governing standards

A number of standards for care have been developed to maintain the use of SUE.

ASCE Standard 38-02

In 2003, the American Society of Civil Engineers (ASCE) published Standard 38-02 titled Standard Guideline for the Collection and Depiction of Existing Subsurface Utility Data. [2] The standard defined SUE and set guidance for the collection and depiction of subsurface utility information. ASCE involvement with SUE is substantially through Utility Engineering & Surveying Institute (UESI). The ASCE standard presents a system to classify the quality of existing subsurface utility data, in accordance with four quality levels:

Malaysia Standard Guideline for Underground Utility Mapping

The Standard Guideline for Underground Utility Mapping in Malaysia was launched in 2006 to create, populate and maintain the national underground utility database. This standard addresses issues such as roles of stakeholders and how utility information can be obtained, and was a call to action from the Malaysian government due to increasing demands for improvements on basic infrastructure facilities including utilities. The Standard is similar to ASCE 38-02, using quality levels D-A as its basis. Although it does not classify utility definition, colours or symbols, the Malaysian standard does specify an accuracy ±10 cm for both horizontal and vertical readings. The Standard is supported by the Malaysian government but is not backed by an Association or governing body. [4]

CSA Standard S250

In 2011, the Canadian Standards Association (CSA) released Standard S250 Mapping of Underground Utility Infrastructure. The Standard is described as a collective framework for best practices to map, depict and manage records across Canada. [4] CSA S250 complements and extends ASCE Standard 38-02 by setting out requirements for generating, storing, distributing, and using mapping records to ensure that underground utilities are readily identifiable and locatable. Accuracy levels expand upon ASCE 38-02 Quality Level A, prescribing a finer level of detail to define the positional location of the infrastructure.

Standards Australia Committee AS 5488-2013

In June, 2013, the Standards Australia Committee IT-036 on Subsurface Utility Engineering Information launched Standard 5488-2013 Classification of Subsurface Utility Information to provide utility owners, operators and locators with a framework for the consistent classification of information concerning subsurface utilities. The standard also provides guidance on how subsurface utility information can be obtained and conveyed to users. [5]

British Standards Institute PAS 128

An industry consultation event in January 2012 kicked off the development of a British SUE standard. The first technical draft was reviewed by the committee in December 2012 and it was released for public/general industry review in March 2013. PAS 128 applies to the detection, verification and location of active, abandoned, redundant or unknown underground utilities and associated surface features that facilitate the location and identification of underground utility infrastructure. It sets out the accuracy to which the data is captured for specific purposes, the quality expected of that data and a means by which to assess and indicate the confidence that can be placed in the data. [6]

Ecuadorian Institute for Standardization NTE INEN 2873

In March, 2015 the Ecuadorian Institute for Standardization (INEN) have published the Standard NTE INEN 2873 for the Detection and Mapping of Utilities and Underground Infrastructure. This Standard establishes procedures for the mapping of utilities for the purposes of reducing the uncertainties created by existing underground utilities. Its systematic use can provide both a means for continual improvement in the reliability, accuracy, and precision of future utility records; and immediate value during project development. It combines two basic concepts. The first concept is the means of classifying the reliability of the existence and location of utilities already installed and hidden in the ground. It is used during project development and is a major component of Subsurface Utility Engineering (SUE). The second concept is how to specify the recording of utilities exposed during their installation or during maintenance/repair operations so that future records are reliable. It is used primarily during utility installation. It is fundamentally a traditional survey and documentation function. Combining these concepts will lead to a continual reduction in the risks created by underground utilities during future projects involving excavation of any kind. [7]

Applications

SUE is mainly used at the design stage of a capital works project and when information is being collected for asset management purposes. In both situations, a similar process is followed but the scope of the work and presentation of the information may vary. When a SUE investigation is carried out for a capital works project prior to construction, the objective is generally to collect accurate utility information within the project area to avoid conflict at later stages of the project.

For initiatives involving asset management, project owners may be missing information about their underground utilities or have inaccurate data. In this situation a SUE provider would collect the required information and add it to the asset management database, according to the four quality levels prescribed by ASCE Standard 38-02.

See also

Related Research Articles

Civil engineering Engineering discipline focused on physical infrastructure

Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads, bridges, canals, dams, airports, sewerage systems, pipelines, structural components of buildings, and railways.

Geographic information system System to capture, manage and present geographic data

A geographic information system (GIS) is a conceptualized framework that provides the ability to capture and analyze spatial and geographic data. GIS applications are computer-based tools that allow the user to create interactive queries, store and edit spatial and non-spatial data, analyze spatial information output, and visually share the results of these operations by presenting them as maps.

Transportation engineering Academic discipline and occupational field

Transportation engineering or transport engineering is the application of technology and scientific principles to the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, efficient, rapid, comfortable, convenient, economical, and environmentally compatible movement of people and goods transport.

Surveying The technique, profession, and science of determining the positions of points and the distances and angles between them

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial or three-dimensional positions of points and the distances and angles between them. A land surveying professional is called a land surveyor. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designed positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

Topography Study of the forms of land surfaces

Topography is the study of the forms and features of land surfaces. The topography of an area could refer to the surface forms and features themselves, or a description.

American Society of Civil Engineers US professional association

The American Society of Civil Engineers (ASCE) is a tax-exempt professional body founded in 1852 to represent members of the civil engineering profession worldwide. Headquartered in Reston, Virginia, it is the oldest national engineering society in the United States. Its constitution was based on the older Boston Society of Civil Engineers from 1848.

Utility location

Utility location is the process of identifying and labeling public utility mains that are underground. These mains may include lines for telecommunication, electricity distribution, natural gas, cable television, fiber optics, traffic lights, street lights, storm drains, water mains, and wastewater pipes. In some locations, major oil and gas pipelines, national defense communication lines, mass transit, rail and road tunnels also compete for space underground.

Ground-penetrating radar

Ground-penetrating radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. It is a non-intrusive method of surveying the sub-surface to investigate underground utilities such as concrete, asphalt, metals, pipes, cables or masonry. This nondestructive method uses electromagnetic radiation in the microwave band of the radio spectrum, and detects the reflected signals from subsurface structures. GPR can have applications in a variety of media, including rock, soil, ice, fresh water, pavements and structures. In the right conditions, practitioners can use GPR to detect subsurface objects, changes in material properties, and voids and cracks.

Coastal management Preventing flooding and erosion of shorelines

Coastal management is defence against flooding and erosion, and techniques that stop erosion to claim lands. Protection against rising sea levels in the 21st century is crucial, as sea level rise accelerates due to climate change. Changes in sea level damage beaches and coastal systems are expected to rise at an increasing rate, causing coastal sediments to be disturbed by tidal energy.

Data cleansing or data cleaning is the process of detecting and correcting corrupt or inaccurate records from a record set, table, or database and refers to identifying incomplete, incorrect, inaccurate or irrelevant parts of the data and then replacing, modifying, or deleting the dirty or coarse data. Data cleansing may be performed interactively with data wrangling tools, or as batch processing through scripting.

Building information modeling (BIM) is a process supported by various tools, technologies and contracts involving the generation and management of digital representations of physical and functional characteristics of places. Building information models (BIMs) are computer files which can be extracted, exchanged or networked to support decision-making regarding a built asset. BIM software is used by individuals, businesses and government agencies who plan, design, construct, operate and maintain buildings and diverse physical infrastructures, such as water, refuse, electricity, gas, communication utilities, roads, railways, bridges, ports and tunnels.

The pavement condition index (PCI) is a numerical index between 0 and 100, which is used to indicate the general condition of a pavement section. The PCI is widely used in transportation civil engineering and asset management, and many municipalities use it to measure the performance of their road infrastructure and their levels of service. It is a statistical measure and requires manual survey of the pavement. This index was originally developed by the United States Army Corps of Engineers, but later it was standardized by the ASTM. The surveying processes and calculation methods have been documented and standardized by ASTM for both roads and airport pavements:

Subsurface Utilities are the utility networks generally laid under the ground surface. These utilities include pipeline networks for water supply, sewage disposal, petrochemical liquid transmission, petrochemical gas transmission or cable networks for power transmission, telecom data transmission, any other data or signal transmission. In North America alone, there are an estimated 35 million miles of subsurface infrastructure that deliver critical services to homes and businesses.

A cost estimate is the approximation of the cost of a program, project, or operation. The cost estimate is the product of the cost estimating process. The cost estimate has a single total value and may have identifiable component values.

Directional boring, also referred to as horizontal directional drilling (HDD), is a minimal impact trenchless method of installing underground utilities such as pipe, conduit, or cables in a relatively shallow arc or radius along a prescribed underground path using a surface-launched drilling rig. Directional Boring/HDD offers significant environmental advantages over traditional cut and cover pipeline/utility installations. The technique is routinely used when conventional trenching or excavating is not practical or when minimal surface disturbance is required.

Quality engineering is the discipline of engineering concerned with the principles and practice of product and service quality assurance and control. In the software development, it is the management, development, operation and maintenance of IT systems and enterprise architectures with a high quality standard.

Thomas Denis O’Rourke is an American educator, engineer and serves as the Thomas R. Biggs Professor, Civil & Environmental Engineering at the College of Engineering, Cornell University. Professor O’Rourke took his Bachelor of Science in civil engineering at Cornell's engineering college in 1970 and his doctorate at the University of Illinois at Urbana-Champaign in 1975.

Geoprofessions is a term coined by the Geoprofessional Business Association to connote various technical disciplines that involve engineering, earth and environmental services applied to below-ground (“subsurface”), ground-surface, and ground-surface-connected conditions, structures, or formations. The principal disciplines include, as major categories:

Infrastructure is a platform for governance, commerce, and economic growth and is "a lifeline for modern societies". It is the hallmark of economic development.

Nicole Metje PhD, MCInstCES, MASCE, FHEA is Professor of Infrastructure Monitoring, Head of the Power and Infrastructure Research Group, and Deputy Director for Sensors of the UKCRIC National Buried Infrastructure Facility at the University of Birmingham. She plays a significant role in the development and application of sensors for buried infrastructure assessment and monitoring.

References