Slip forming

Last updated
The first residential building of slipform construction; erected in 1950 in Vastertorp, Sweden, by AB Bygging Vastertorp, bebyggelse med glidform 1950.jpg
The first residential building of slipform construction; erected in 1950 in Västertorp, Sweden, by AB Bygging
Later picture of the residential building in Vastertorp Vastertorp Snoflingebacken 2015.jpg
Later picture of the residential building in Västertorp

Slip forming, continuous poured, continuously formed, or slipform construction is a construction method in which concrete is poured into a continuously moving form. [1] Slip forming is used for tall structures (such as bridges, towers, buildings, and dams), as well as horizontal structures, such as roadways. Slipforming enables continuous, non-interrupted, cast-in-place "flawless" (i.e. no joints) concrete structures that have performance characteristics superior to those of piecewise construction using discrete form elements. Slip forming relies on the quick-setting properties of concrete, and requires a balance between quick-setting capacity and workability. Concrete needs to be workable enough to be placed into the form and consolidated (via vibration), yet quick-setting enough to emerge from the form with strength. This strength is needed because the freshly set concrete must not only permit the form to "slip" by the concrete without disturbing it, but also support the pressure of the new concrete and resist collapse caused by the vibration of the compaction machinery.

Contents

Slipforming of a 118 metre-tall grain silo in Zurich in 2015 Gleitschalung slipform 'Bitschnau Gleit & Schalungstechnik.jpg
Slipforming of a 118 metre-tall grain silo in Zürich in 2015
Continuous slip formed gravity-based structure supports under construction in a Norwegian fjord. The visible jib cranes would be delivering buckets of concrete to the support cylinders during the continuous pour of concrete creating seamless walls. Oil platform Norway.jpg
Continuous slip formed gravity-based structure supports under construction in a Norwegian fjord. The visible jib cranes would be delivering buckets of concrete to the support cylinders during the continuous pour of concrete creating seamless walls.

In vertical slip forming the concrete form may be surrounded by a platform on which workers stand, placing steel reinforcing rods into the concrete and ensuring a smooth pour. [2] Together, the concrete form and working platform are raised by means of hydraulic jacks. [3] Generally, the slipform rises at a rate which permits the concrete to harden by the time it emerges from the bottom of the form. [1]

In horizontal slip forming for pavement and traffic separation walls, concrete is laid down, vibrated, worked, and settled in place while the form itself slowly moves ahead. This method was initially devised and utilized in Interstate Highway construction initiated by the Eisenhower administration during the 1950s.

Slipform monobox system Gleitschalung Monobox Bitschnau.jpg
Slipform monobox system

History

The slip forming technique was in use by the early 20th century for building silos and grain elevators. James MacDonald, of MacDonald Engineering of Chicago was the pioneer in utilizing slip form concrete for construction. His concept of placing circular bins in clusters was patented, with photographs and illustrations, contained in a 1907 book, “The Design Of Walls, Bins, And Grain Elevators”. [4]

In 1910, MacDonald published a paper “Moving Forms for Reinforced Concrete Storage Bins,” [5] describing the use of molds for moving forms, using jacks and concrete to form a continuous structure without joints or seams. This paper details the concept and procedure for creating slip form concrete structures. On May 24, 1917, a patent was issued to James MacDonald of Chicago, "for a device to move and elevate a concrete form in a vertical plane". [6]

Silos

James MacDonald’s bin and silo design was utilized around the world into the late 1970s by MacDonald Engineering. In the 1947-1950 period, MacDonald Engineering constructed over 40 concrete towers using the slip-form method for AT&T Long Lines [7] up to 58 m (190 ft) tall for microwave relay stations across the United States.

AT&T Long Lines relay tower in Indiana constructed with the slip-form method ValpoTower1.JPG
AT&T Long Lines relay tower in Indiana constructed with the slip-form method
Two coal silos being constructed by slip forming Gleitschalung Bitschnau Kohlesilo Lunen.jpg
Two coal silos being constructed by slip forming

The former Landmark Hotel & Casino in Las Vegas was constructed in 1961 by MacDonald Engineering as a subcontractor, utilizing Macdonald’s concept of slip form concrete construction to build the 31 story reinforced steel tower. [8]

Residential and commercial building

The technique was introduced to residential and commercial buildings already in the 1950s in Sweden. The Swedish company Bygging developed in 1944 the first hydraulic hijacks to lift the forms, which got patented. The first houses were built in Västertorp, Sweden, and Bygging became pioneers around the world with slip forming technique, from 1980 with the name Bygging-Uddemann. [9]

Residential and commercial building also was introduced in the late 1960s in USA. [2] One of Its first uses in high-rise buildings in the United States was on the shear wall supported apartment building at Turk & Eddy Streets in San Francisco, CA, in 1962, built by the San Francisco office of Macdonald Engineering. The first notable use of the method in a residential/retail business was the Skylon Tower in Niagara Falls, Ontario, which was completed in 1965. Another unusual structure was the tapered buttress structures for the Sheraton Waikiki Hotel in Honolulu, Hawaii, in 1969. Another shear wall supported structure was the Casa Del Mar Condominium on Key Biscayne, Miami, FL in 1970.

From the 1950s, the vertical technique was adapted to mining head frames, ventilation structures, below grade shaft lining, and coal train loading silos; theme and communication tower construction; high rise office building cores; shear wall supported apartment buildings; tapered stacks and hydro intake structures, etc. It is used for structures which would otherwise not be possible, such as the separate legs of the Troll A deep sea oil drilling platform which stands on the sea floor in water about 300 m (980 ft) deep, has an overall height of 472 m (1,549 ft) weighs 595,000 t (93,700,000 st), and has the distinction of being the tallest structure ever moved (towed) by mankind.

In addition to the typical silos and shear walls and cores in buildings, the system is used for lining underground shafts and surge tanks in hydroelectric generating facilities. The technique was utilized to build the Inco Superstack in Sudbury, Ontario, and the CN Tower in Toronto. In 2010, the technique was used to build the core of the supertall Shard London Bridge tower in London, England.

Related Research Articles

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of fine and coarse aggregate bonded together with a fluid cement that hardens (cures) over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. Globally, the ready-mix concrete industry, the largest segment of the concrete market, is projected to exceed $600 billion in revenue by 2025. This widespread use results in a number of environmental impacts. Most notably, the production process for cement produces large volumes of greenhouse gas emissions, leading to net 8% of global emissions. Other environmental concerns include widespread illegal sand mining, impacts on the surrounding environment such as increased surface runoff or urban heat island effect, and potential public health implications from toxic ingredients. Significant research and development is being done to try to reduce the emissions or make concrete a source of carbon sequestration, and increase recycled and secondary raw materials content into the mix to achieve a circular economy. Concrete is expected to be a key material for structures resilient to climate disasters, as well as a solution to mitigate the pollution of other industries, capturing wastes such as coal fly ash or bauxite tailings and residue.

<span class="mw-page-title-main">Central Plaza (Hong Kong)</span> Supertall skyscraper in Wan Chai, Hong Kong

Central Plaza is a 78-storey, 374 m (1,227 ft) skyscraper completed in August 1992 at 18 Harbour Road, in Wan Chai on Hong Kong Island in Hong Kong. It is the third tallest tower in the city after 2 International Finance Centre in Central and the ICC in West Kowloon. It was the tallest building in Asia from 1992 to 1996, until the Shun Hing Square was built in Shenzhen, a neighbouring city. Central Plaza surpassed the Bank of China Tower as the tallest building in Hong Kong until the completion of 2 IFC.

<span class="mw-page-title-main">Geotechnical engineering</span> Scientific study of earth materials in engineering problems

Geotechnical engineering is the branch of civil engineering concerned with the engineering behavior of earth materials. It uses the principles of soil mechanics and rock mechanics for the solution of its respective engineering problems. It also relies on knowledge of geology, hydrology, geophysics, and other related sciences. Geotechnical (rock) engineering is a subdiscipline of geological engineering.

<span class="mw-page-title-main">Skyscraper</span> Tall habitable building

A skyscraper is a tall continuously habitable building having multiple floors. Modern sources currently define skyscrapers as being at least 100 metres (330 ft) or 150 metres (490 ft) in height, though there is no universally accepted definition. Skyscrapers are very tall high-rise buildings. Historically, the term first referred to buildings with between 10 and 20 stories when these types of buildings began to be constructed in the 1880s. Skyscrapers may host offices, hotels, residential spaces, and retail spaces.

<span class="mw-page-title-main">Grain elevator</span> Grain storage building

A grain elevator is a facility designed to stockpile or store grain. In the grain trade, the term "grain elevator" also describes a tower containing a bucket elevator or a pneumatic conveyor, which scoops up grain from a lower level and deposits it in a silo or other storage facility.

This page is a list of construction topics.

<span class="mw-page-title-main">Shear wall</span> A wall intended to withstand the lateral load

In structural engineering, a shear wall is a vertical element of a system that is designed to resist in-plane lateral forces, typically wind and seismic loads. In many jurisdictions, the International Building Code and International Residential Code govern the design of shear walls.

<span class="mw-page-title-main">Formwork</span> Molds for cast

Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.

<span class="mw-page-title-main">Silo</span> Structure for storing crops

A silo is a structure for storing bulk materials. Silos are used in agriculture to store fermented feed known as silage, not to be confused with a grain bin, which is used to store grains. Silos are commonly used for bulk storage of grain, coal, cement, carbon black, woodchips, food products and sawdust. Three types of silos are in widespread use today: tower silos, bunker silos, and bag silos.

<span class="mw-page-title-main">Slipform stonemasonry</span>

Slipform stonemasonry is a method for making a reinforced concrete wall with stone facing in which stones and mortar are built up in courses within reusable slipforms. It is a cross between traditional mortared stone wall and a veneered stone wall. Short forms, up to 60 cm high, are placed on both sides of the wall to serve as a guide for the stone work. The stones are placed inside the forms with the good faces against the form work. Concrete is poured in behind the rocks. Rebar is added for strength, to make a wall that is approximately half reinforced concrete and half stonework. The wall can be faced with stone on one side or both sides. After the concrete sets enough to hold the wall together, the forms are "slipped" up to pour the next level. With slipforms it is easy for a novice to build free-standing stone walls.

<span class="mw-page-title-main">History of structural engineering</span>

The history of structural engineering dates back to at least 2700 BC when the step pyramid for Pharaoh Djoser was built by Imhotep, the first architect in history known by name. Pyramids were the most common major structures built by ancient civilizations because it is a structural form which is inherently stable and can be almost infinitely scaled.

Edward Giles Stone was an Australian engineer prominent in many innovative, often daringly spectacular, aspects of early reinforced concrete constructions in Australia. He was also involved in cement manufacture. He was briefly a pioneer in prefab housing but that industry was destined to use timber, not concrete plates.

<span class="mw-page-title-main">Lift slab construction</span>

Lift slab construction is a method of constructing concrete buildings by casting the floor or roof slab on top of the previous slab and then raising (jacking) the slab up with hydraulic jacks. This method of construction allows for a large portion of the work to be completed at ground level, negating the need to form floor work in place. The ability to create monolithic concrete slabs makes the lift slab construction technique useful in quickly creating structures with repetitive form work, like parking ramps.

<span class="mw-page-title-main">Great Northern Elevator</span> Steel grain elevator in New York, United States

The Great Northern Elevator is a grain storage facility at 250 Ganson Street in Buffalo, New York. The elevator is located on the City Ship Canal and at the time of its completion in 1897, the elevator was the world's largest. The elevator was the first to employ cylindrical steel bins for grain storage, and also one of the first to run on electricity. The brick curtain wall does not support the bins or the working house and was designed as weatherproofing only.

<span class="mw-page-title-main">Kolbjørn Saether</span> Norwegian-American structural engineer

Kolbjørn Saether P.E., M.ASCE was an American structural engineer in the City of Chicago for 47 years. Saether dedicated his life to engineering and was known as a leader in his field. He was a past director of the Structural Engineers Association of Illinois and was the organization's president from 1980 to 1981. During his career he developed innovative engineering solutions for skyrise building construction that are now part of the Chicago skyline, published theoretical insights to enhance the state of the art in structural engineering, and patented novel techniques to advance the art of building construction.

<span class="mw-page-title-main">Julius Kahn (inventor)</span> American inventor (1874–1942)

Julius Kahn was an American engineer, industrialist, and manufacturer. He was the inventor of the Kahn system, a reinforced concrete engineering technique for building construction. The Kahn system, which he patented in 1903, was used worldwide for housing, factories, offices and industrial buildings. He formed his own company, Trussed Concrete Steel Company, as a manufacturing source for his inventions. He also founded United Steel Company and was chairman of Truscon Laboratories.

<span class="mw-page-title-main">Hy-Rib</span> Reinforcement system for floors, walls, and ceilings of buildings

Hy-Rib was a brand name for a product manufactured by the Trussed Concrete Steel Company. It is an engineering reinforcement system for floors, walls, and ceilings of buildings and houses. This product is a derivative of the Kahn Trussed Bar for beams and columns that was invented by Julius Kahn. Kahn engineered the Hy-Rib products and they were first manufactured in 1908.

<span class="mw-page-title-main">Kahn system</span>

The Kahn system is an industrial construction technique for reinforcement of buildings that was engineered and patented by Julius Kahn. The Kahn system is an industrial construction design using the Kahn trussed bar as its basis. This steel bar was a new type of reinforcing bar used in concrete and had unique engineered features to distribute stress.

<span class="mw-page-title-main">Kairi Maize Silos</span> Historic site in Queensland, Australia

Kairi Maize Silos are heritage-listed silos at 22 Godfrey Road, Kairi, Tablelands Region, Queensland, Australia. They were designed and built in 1924 by Henry Simon Ltd. They were added to the Queensland Heritage Register on 8 August 2007.

<span class="mw-page-title-main">3D concrete printing</span>

3D concrete printing, or simply concrete printing, refers to digital fabrication processes for cementitious materials based on one of several different 3D printing technologies. 3D printed concrete eliminates the need for formwork, reducing material waste and allowing for greater geometric freedom in complex structures. With recent developments in mix design and 3D printing technology over the last decade, 3D concrete printing has grown exponentially since its emergence in the 1990s. Architectural and structural applications of 3D-printed concrete include the production of building blocks, building modules, street furniture, pedestrian bridges, and low-rise residential structures.

References

  1. 1 2 Nawy, Concrete Construction Engineering Handbook, 2008, p. 10—33.
  2. 1 2 "'Slip Forming' Technique Introduced in Baltimore." Washington Post. May 1, 1971.
  3. Nawy, Concrete Construction Engineering Handbook, 2008, p. 10—34.
  4. “The Design Of Walls, Bins, And Grain Elevators”. By Milo Smith Ketchum, The Engineering News Publishing Co.,1907, page 294.
  5. James MacDonald - “Moving Forms for Reinforced Concrete Storage Bins.” Proceedings of the Seventh Annual Convention Held at N.Y., N.Y. Volume 7, By National Association of Cement Users (U.S.). December 12–20, 1910. page 554.
  6. Official gazette of the United States Patent Office, By United States. Patent Office Volume CCXXXVII. April 24, 1917, page 943.
  7. The Concrete Microwave Towers of AT&T's First Transcontinental Radio Route>
  8. Construction of tower for the LandMark Hotel/Casino, Las Vegas
  9. Glidformsgjutning av betonghus, av civilingenjör Sven-Erik Svensson, Bygging AB, Stockholm

Bibliography