Slip forming

Last updated
The first residential building of slipform construction; erected in 1950 in Vastertorp, Sweden, by AB Bygging Vastertorp, bebyggelse med glidform 1950.jpg
The first residential building of slipform construction; erected in 1950 in Västertorp, Sweden, by AB Bygging
Later picture of the residential building in Vastertorp Vastertorp Snoflingebacken 2015.jpg
Later picture of the residential building in Västertorp

Slip forming, continuous poured, continuously formed, or slipform construction is a construction method in which concrete is placed into a form that may be in continuous motion horizontally, or incrementally raised vertically.

Contents

In horizontal construction, such as roadways and curbs, the weight of the concrete, forms, and any associated machinery is borne by the ground. In vertical construction, such as bridges, towers, buildings, and dams, forms are raised hydraulically in increments, no faster than the most recently poured concrete can set and support the combined weight of the concrete, forms, and machinery, and the pressure of concrete consolidation. [1]

Slipforming enables continuous, non-interrupted, cast-in-place, cold joint- and seam-free concrete structures that have performance characteristics superior to those of piecewise construction using discrete form elements.[ citation needed ]

Overview

Slip forming relies on the quick-setting properties of concrete, and requires a balance between workability and quick-setting capacity. Concrete needs to be workable enough to be placed into the form and consolidated (via vibration), yet quick-setting enough to emerge from the form with strength. This strength is needed because the freshly set concrete must not only permit the form to "slip" by the concrete without disturbing it, but also support the pressure of the new concrete and resist collapse caused by the vibration of the compaction machinery.

Slipforming of a 118 metre-tall grain silo in Zurich in 2015 Gleitschalung slipform 'Bitschnau Gleit & Schalungstechnik.jpg
Slipforming of a 118 metre-tall grain silo in Zürich in 2015
Continuous slip formed gravity-based structure supports under construction in a Norwegian fjord. The visible jib cranes would be delivering buckets of concrete to the support cylinders during the continuous pour of concrete creating seamless walls. Oil platform Norway.jpg
Continuous slip formed gravity-based structure supports under construction in a Norwegian fjord. The visible jib cranes would be delivering buckets of concrete to the support cylinders during the continuous pour of concrete creating seamless walls.

Horizontal

In horizontal slip forming for pavement, curbs, and traffic separation walls, concrete is laid down, vibrated, worked, and settled in place while the form itself slowly moves ahead. This method was initially devised and utilized in Interstate Highway construction initiated by the Eisenhower administration during the 1950s.

Slipform monobox system Gleitschalung Monobox Bitschnau.jpg
Slipform monobox system

Vertical

In vertical slip forming the concrete form may be surrounded by a platform on which workers stand, placing steel reinforcing rods ahead of the concrete and ensuring a smooth pour. [2] Together, the concrete form and working platform are raised by means of hydraulic jacks. [3] The slipform can only rise at a rate which permits the concrete to harden by the time it emerges from the bottom of the form. [1]

History

The slip forming technique was in use by the early 20th century for building silos and grain elevators. James MacDonald, of MacDonald Engineering of Chicago was the pioneer in utilizing slip form concrete for construction. His concept of placing circular bins in clusters was patented, with photographs and illustrations, contained in a 1907 book, "The Design Of Walls, Bins, And Grain Elevators". [4]

In 1910, MacDonald published a paper "Moving Forms for Reinforced Concrete Storage Bins," [5] describing the use of molds for moving forms, using jacks and concrete to form a continuous structure without joints or seams. This paper details the concept and procedure for creating slip form concrete structures. On May 24, 1917, a patent was issued to James MacDonald of Chicago, "for a device to move and elevate a concrete form in a vertical plane". [6]

Silos

James MacDonald’s bin and silo design was utilized around the world into the late 1970s by MacDonald Engineering. In the 1947-1950 period, MacDonald Engineering constructed over 40 concrete towers using the slip-form method for AT&T Long Lines [7] up to 58 m (190 ft) tall for microwave relay stations across the United States.

AT&T Long Lines relay tower in Indiana constructed with the slip-form method ValpoTower1.JPG
AT&T Long Lines relay tower in Indiana constructed with the slip-form method
Two coal silos being constructed by slip forming Gleitschalung Bitschnau Kohlesilo Lunen.jpg
Two coal silos being constructed by slip forming

The former Landmark Hotel & Casino in Las Vegas was constructed in 1961 by MacDonald Engineering as a subcontractor, utilizing Macdonald’s concept of slip form concrete construction to build the 31 story reinforced steel tower. [8]

Residential and commercial building

The technique was introduced to residential and commercial buildings already in the 1950s in Sweden. The Swedish company Bygging developed in 1944 the first hydraulic hijacks to lift the forms, which got patented. The first houses were built in Västertorp, Sweden, and Bygging became pioneers around the world with slip forming technique, from 1980 with the name Bygging-Uddemann. [9]

Residential and commercial building also was introduced in the late 1960s in USA. [2] One of Its first uses in high-rise buildings in the United States was on the shear wall supported apartment building at Turk & Eddy Streets in San Francisco, CA, in 1962, built by the San Francisco office of Macdonald Engineering.[ citation needed ] The first notable use of the method in a residential/retail business was the Skylon Tower in Niagara Falls, Ontario, which was completed in 1965.[ citation needed ] Another unusual structure was the tapered buttress structures for the Sheraton Waikiki Hotel in Honolulu, Hawaii, in 1969. Another shear wall supported structure was the Casa Del Mar Condominium on Key Biscayne, Miami, FL in 1970.

From the 1950s, the vertical technique was adapted to mining head frames, ventilation structures, below grade shaft lining, and coal train loading silos; theme and communication tower construction; high rise office building cores; shear wall supported apartment buildings; tapered stacks and hydro intake structures, etc. It is used for structures which would otherwise not be possible, such as the separate legs of the Troll A deep sea oil drilling platform which stands on the sea floor in water about 300 m (980 ft) deep, has an overall height of 472 m (1,549 ft) weighs 595,000 t (656,000 short tons), and has the distinction of being the tallest structure ever moved (towed) by mankind.

In addition to the typical silos and shear walls and cores in buildings, the system is used for lining underground shafts and surge tanks in hydroelectric generating facilities. The technique was utilized to build the Inco Superstack in Sudbury, Ontario, and the CN Tower in Toronto. In 2010, the technique was used to build the core of the supertall Shard London Bridge tower in London, England.

Related Research Articles

<span class="mw-page-title-main">Concrete</span> Composite construction material

Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.

<span class="mw-page-title-main">Reinforced concrete</span> Concrete with rebar

Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.

<span class="mw-page-title-main">Stonemasonry</span> Creation of buildings, structures, and sculpture using stone

Stonemasonry or stonecraft is the creation of buildings, structures, and sculpture using stone as the primary material. Stonemasonry is the craft of shaping and arranging stones, often together with mortar and even the ancient lime mortar, to wall or cover formed structures.

<span class="mw-page-title-main">Retaining wall</span> Artificial wall used for supporting soil between two different elevations

Retaining walls are relatively rigid walls used for supporting soil laterally so that it can be retained at different levels on the two sides. Retaining walls are structures designed to restrain soil to a slope that it would not naturally keep to. They are used to bound soils between two different elevations often in areas of inconveniently steep terrain in areas where the landscape needs to be shaped severely and engineered for more specific purposes like hillside farming or roadway overpasses. A retaining wall that retains soil on the backside and water on the frontside is called a seawall or a bulkhead.

Earthbag construction is an inexpensive building method using mostly local soil to create structures which are both strong and can be quickly built.

<span class="mw-page-title-main">Seismic retrofit</span> Modification of existing structures to make them more resistant to seismic activity

Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. With better understanding of seismic demand on structures and with recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged. Prior to the introduction of modern seismic codes in the late 1960s for developed countries and late 1970s for many other parts of the world, many structures were designed without adequate detailing and reinforcement for seismic protection. In view of the imminent problem, various research work has been carried out. State-of-the-art technical guidelines for seismic assessment, retrofit and rehabilitation have been published around the world – such as the ASCE-SEI 41 and the New Zealand Society for Earthquake Engineering (NZSEE)'s guidelines. These codes must be regularly updated; the 1994 Northridge earthquake brought to light the brittleness of welded steel frames, for example.

This page is a list of construction topics.

<span class="mw-page-title-main">Shear wall</span> A wall intended to withstand the lateral load

A shear wall is an element of a structurally engineered system that is designed to resist in-plane lateral forces, typically wind and seismic loads.

<span class="mw-page-title-main">Shotcrete</span> Concrete or mortar building material

Shotcrete, gunite, or sprayed concrete is concrete or mortar conveyed through a hose and pneumatically projected at high velocity onto a surface. This construction technique was invented by Carl Akeley and first used in 1907. The concrete is typically reinforced by conventional steel rods, steel mesh, or fibers.

Earthquake engineering is an interdisciplinary branch of engineering that designs and analyzes structures, such as buildings and bridges, with earthquakes in mind. Its overall goal is to make such structures more resistant to earthquakes. An earthquake engineer aims to construct structures that will not be damaged in minor shaking and will avoid serious damage or collapse in a major earthquake. A properly engineered structure does not necessarily have to be extremely strong or expensive. It has to be properly designed to withstand the seismic effects while sustaining an acceptable level of damage.

<span class="mw-page-title-main">Formwork</span> Molds for cast

Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.

<span class="mw-page-title-main">Silo</span> Structure for storing crops

A silo is a structure for storing bulk materials.

<span class="mw-page-title-main">Slipform stonemasonry</span>

Slipform stonemasonry is a method for making a reinforced concrete wall with stone facing in which stones and mortar are built up in courses within reusable slipforms. It is a cross between traditional mortared stone wall and a veneered stone wall. Short forms, up to 60 cm high, are placed on both sides of the wall to serve as a guide for the stone work. The stones are placed inside the forms with the good faces against the form work. Concrete is poured in behind the rocks. Rebar is added for strength, to make a wall that is approximately half reinforced concrete and half stonework. The wall can be faced with stone on one side or both sides. After the concrete sets enough to hold the wall together, the forms are "slipped" up to pour the next level. With slipforms it is easy for a novice to build free-standing stone walls.

<span class="mw-page-title-main">Zip Feed Tower</span> Grain elevator and feed mill in Sioux Falls, South Dakota

The Zip Feed Tower was a grain elevator and feed mill in Sioux Falls, South Dakota. At 202 feet it was the tallest occupiable structure in South Dakota from its construction in 1956–57 until its demolition in December 2005. The mill closed in 2000 and in 2005 was scheduled for demolition to make way for office and retail space.

<span class="mw-page-title-main">Deep foundation</span> Type of foundation

A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.

<span class="mw-page-title-main">Steel plate shear wall</span>

A steel plate shear wall (SPSW) consists of steel infill plates bounded by boundary elements.

<span class="mw-page-title-main">History of structural engineering</span>

The history of structural engineering dates back to at least 2700 BC when the step pyramid for Pharaoh Djoser was built by Imhotep, the first architect in history known by name. Pyramids were the most common major structures built by ancient civilizations because it is a structural form which is inherently stable and can be almost infinitely scaled.

<span class="mw-page-title-main">Lift slab construction</span>

Lift slab construction is a method of constructing concrete buildings by casting the floor or roof slab on top of the previous slab and then raising (jacking) the slab up with hydraulic jacks. This method of construction allows for a large portion of the work to be completed at ground level, negating the need to form floor work in place. The ability to create monolithic concrete slabs makes the lift slab construction technique useful in quickly creating structures with repetitive form work, like parking ramps.

<span class="mw-page-title-main">Kolbjørn Saether</span> Norwegian-American structural engineer

Kolbjørn Saether P.E., M.ASCE was an American structural engineer in the City of Chicago for 47 years. Saether dedicated his life to engineering and was known as a leader in his field. He was a past director of the Structural Engineers Association of Illinois and was the organization's president from 1980 to 1981. During his career he developed innovative engineering solutions for skyrise building construction that are now part of the Chicago skyline, published theoretical insights to enhance the state of the art in structural engineering, and patented novel techniques to advance the art of building construction.

<span class="mw-page-title-main">3D concrete printing</span> Additive manufacturing process using concrete

3D concrete printing, or simply concrete printing, refers to digital fabrication processes for cementitious materials based on one of several different 3D printing technologies. 3D-printed concrete eliminates the need for formwork, reducing material waste and allowing for greater geometric freedom in complex structures. With recent developments in mix design and 3D printing technology over the last decade, 3D concrete printing has grown exponentially since its emergence in the 1990s. Architectural and structural applications of 3D-printed concrete include the production of building blocks, building modules, street furniture, pedestrian bridges, and low-rise residential structures.

References

  1. 1 2 Nawy, Concrete Construction Engineering Handbook, 2008, p. 10—33.
  2. 1 2 "'Slip Forming' Technique Introduced in Baltimore." Washington Post. May 1, 1971.
  3. Nawy, Concrete Construction Engineering Handbook, 2008, p. 10—34.
  4. "The Design Of Walls, Bins, And Grain Elevators". By Milo Smith Ketchum, The Engineering News Publishing Co.,1907, page 294.
  5. James MacDonald - "Moving Forms for Reinforced Concrete Storage Bins." Proceedings of the Seventh Annual Convention Held at N.Y., N.Y. Volume 7, By National Association of Cement Users (U.S.). December 12–20, 1910. page 554.
  6. Official gazette of the United States Patent Office, By United States. Patent Office Volume CCXXXVII. April 24, 1917, page 943.
  7. The Concrete Microwave Towers of AT&T's First Transcontinental Radio Route>
  8. Construction of tower for the LandMark Hotel/Casino, Las Vegas
  9. Glidformsgjutning av betonghus, av civilingenjör Sven-Erik Svensson, Bygging AB, Stockholm

Bibliography