Roller-compacted concrete (RCC) or rolled concrete (rollcrete) is a special blend of concrete that has essentially the same ingredients as conventional concrete but in different ratios, and increasingly with partial substitution of fly ash for portland cement. [2] The partial substitution of fly ash for Portland Cement is an important aspect of RCC dam construction because the heat generated by fly ash hydration is significantly less than the heat generated by portland cement hydration. This in turn reduces the thermal loads on the concrete and reduces the potential for thermal cracking to occur. RCC is a mix of cement/fly ash, water, sand, aggregate and common additives, but contains much less water. The produced mix is drier and essentially has no slump. RCC is placed in a manner similar to road paving; the material is delivered by dump trucks or conveyors, spread by small bulldozers or specially modified asphalt pavers, and then compacted by vibratory rollers.
In dam construction, roller-compacted concrete began its initial development with the construction of the Alpe Gera Dam near Sondrio in North Italy between 1961 and 1964. Concrete was laid in a similar form and method but not rolled. [3] RCC had been touted in engineering journals during the 1970s as a revolutionary material suitable for, among other things, dam construction. [4] Initially and generally, RCC was used for backfill, sub-base and concrete pavement construction, but increasingly it has been used to build concrete gravity dams because the low cement content and use of fly ash cause less heat to be generated while curing than do conventional mass concrete placements. Roller-compacted concrete has many time and cost benefits over conventional mass concrete dams; these include higher rates of concrete placement, lower material costs and lower costs associated with post-cooling and formwork.
For dam applications, RCC sections are built lift-by-lift in successive horizontal layers resulting in a downstream slope that resembles a concrete staircase. Once a layer is placed, it can immediately support the earth-moving equipment to place the next layer. After RCC is deposited on the lift surface, small dozers typically spread it in one-foot-thick (about 30 cm) layers. [5]
The first RCC dam built in the United States was the Willow Creek Dam on Willow Creek, a tributary in Oregon of the Columbia River. It was constructed by the US Army Corps of Engineers between November 1981 [6] and February 1983. [4] Construction proceeded well, within a fast schedule and under budget (estimated US$50 million, actual US$35 million). On initial filling though, it was found that the leakage between the compacted layers within the dam body was unusually high. This condition was treated by traditional remedial grouting at a further cost of US$2 million, which initially reduced the leakage by nearly 75%; over the years, seepage has since decreased to less than 10% of its initial flow. Concern over the dam's long-term safety has continued however, although only indirectly related to its RCC construction. Within a few years of construction, problems were noted with stratification of the reservoir water, caused by upstream pollution and anoxic decomposition, which produced hydrogen sulfide gas. Concerns were expressed that this could in turn give rise to sulfuric acid, and thus accelerate damage to the concrete. The controversy itself, as well as its handling, continued for some years. In 2004 an aeration plant was installed to address the root cause in the reservoir, as had been suggested 18 years earlier. [4]
In the quarter century following the construction of the Willow Creek Dam, considerable research and experimentation yielded many improvements in concrete mix designs, dam designs and construction methods for roller-compacted concrete dams. By 2008, about 350 RCC dams existed worldwide. [7] As of 2018, the highest dam of this type was the Gilgel Gibe III Dam in Ethiopia, at 250 m (820 ft), with the Pakistani Diamer-Bhasha Dam under construction at 272 m (892 ft). [8]
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined.
A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.
Highway engineering is a professional engineering discipline branching from the civil engineering subdiscipline of transportation engineering that involves the planning, design, construction, operation, and maintenance of roads, highways, streets, bridges, and tunnels to ensure safe and effective transportation of people and goods. Highway engineering became prominent towards the latter half of the 20th century after World War II. Standards of highway engineering are continuously being improved. Highway engineers must take into account future traffic flows, design of highway intersections/interchanges, geometric alignment and design, highway pavement materials and design, structural design of pavement thickness, and pavement maintenance.
A road surface or pavement is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, macadam, hoggin, cobblestone and granite setts were extensively used, but these have mostly been replaced by asphalt or concrete laid on a compacted base course. Asphalt mixtures have been used in pavement construction since the beginning of the 20th century and are of two types: metalled (hard-surfaced) and unmetalled roads. Metalled roadways are made to sustain vehicular load and so are usually made on frequently used roads. Unmetalled roads, also known as gravel roads or dirt roads, are rough and can sustain less weight. Road surfaces are frequently marked to guide traffic.
Asphalt concrete is a composite material commonly used to surface roads, parking lots, airports, and the core of embankment dams. Asphalt mixtures have been used in pavement construction since the beginning of the twentieth century. It consists of mineral aggregate bound together with bitumen, laid in layers, and compacted.
A gravity dam is a dam constructed from concrete or stone masonry and designed to hold back water by using only the weight of the material and its resistance against the foundation. Gravity dams are designed so that each section of the dam is stable and independent of any other dam section.
Soil cement is a construction material, a mix of pulverized natural soil with small amount of portland cement and water, usually processed in a tumbler, compacted to high density. Hard, semi-rigid durable material is formed by hydration of the cement particles.
Air entrainment in concrete is the intentional creation of tiny air bubbles in a batch by adding an air entraining agent during mixing. A form of surfactant it allows bubbles of a desired size to form. These are created during concrete mixing, with most surviving to remain part of it when hardened.
Concrete recycling is the use of rubble from demolished concrete structures. Recycling is cheaper and more ecological than trucking rubble to a landfill. Crushed rubble can be used for road gravel, revetments, retaining walls, landscaping gravel, or raw material for new concrete. Large pieces can be used as bricks or slabs, or incorporated with new concrete into structures, a material called urbanite.
A pugmill, pug mill, or commonly just pug, is a machine in which clay or other materials are extruded in a plastic state or a similar machine for the trituration of ore. Industrial applications are found in pottery, bricks, cement and some parts of the concrete and asphalt mixing processes. A pugmill may be a fast continuous mixer. A continuous pugmill can achieve a thoroughly mixed, homogeneous mixture in a few seconds, and the right machines can be matched to the right application by taking into account the factors of agitation, drive assembly, inlet, discharge, cost and maintenance. Mixing materials at optimum moisture content requires the forced mixing action of the pugmill paddles, while soupy materials might be mixed in a drum mixer. A typical pugmill consists of a horizontal boxlike chamber with a top inlet and a bottom discharge at the other end, 2 shafts with opposing paddles, and a drive assembly. Some of the factors affecting mixing and residence time are the number and the size of the paddles, paddle swing arc, overlap of left and right swing arc, size of mixing chamber, length of pugmill floor, and material being mixed.
Coal combustion products (CCPs), also called coal combustion wastes (CCWs) or coal combustion residuals (CCRs), are categorized in four groups, each based on physical and chemical forms derived from coal combustion methods and emission controls:
Hickory Log Creek Dam is a gravity dam on the Hickory Log Creek which runs from northeast and north-central Cherokee County, Georgia, United States, south-southwest to the northeastern part of Canton, the county seat. It is a tributary of the Etowah River, which it meets shortly after crossing under Riverstone Parkway.
Willow Creek Dam is a dam in Morrow County of the U.S. state of Oregon, located just east of Heppner's city limits. It was the first major dam in the United States constructed of roller-compacted concrete.
Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs.
Wolwedans Dam is a concrete dam in South Africa located on the Great Brak River near Mossel Bay, Western Cape, South Africa. The dam is the main source of water for the municipality of Mossel Bay as well as the gas-to-liquids refinery PetroSA. The dam serves mainly for municipal and industrial water supply purposes.
The Alpe Gera Dam is a gravity dam on the Cormor River in a lateral valley of Valmalenco 17 km (11 mi) northeast of Sondrio in the Lombardy region of Italy. It is 174 m (571 ft) tall and supports a 35 MW hydroelectric power station.
The Jiangya Dam is a concrete gravity dam on the Loushui River, located 50 km (31 mi) northeast of Zhangjiajie in Hunan Province, China. The primary purpose of the multi-purpose dam is flood control but it also generates hydroelectricity, supplies water for irrigation and municipal use and improves navigation.
The environmental impact of concrete, its manufacture, and its applications, are complex, driven in part by direct impacts of construction and infrastructure, as well as by CO2 emissions; between 4-8% of total global CO2 emissions come from concrete. Many depend on circumstances. A major component is cement, which has its own environmental and social impacts and contributes largely to those of concrete.
Changuinola I Dam, is located in district of Changuinola, in the Province of Bocas del Toro, in the western part of Panama. It is the largest roller-compacted concrete arch-gravity dam in the World.
Koysha Hydroelectric Power is a hydropower gravity dam built in Omo River in South West Ethiopia Peoples' Region and currently under construction since 2016. Owned by the Ethiopian Electric Power (EEP), the dam produces up to 6,460 Giga watt-hours (GWh) of electricity. In May 2016, the Italian firm Salini Impregilo contracted with EEP to build 170 meter high rolled compacted concrete (RCC) and the reservoir volume is 6000 million cubic to produce 6,460 GWh power generation capacity annually. Once completed, the dam will be the second-largest dam in Ethiopia after the Grand Ethiopian Renaissance Dam (GERD).