Foam concrete

Last updated

A cylinder of foam concrete. Foamed Concrete AZ (8405086019).jpg
A cylinder of foam concrete.

Foam concrete, also known as Lightweight Cellular Concrete (LCC) and Low Density Cellular Concrete (LDCC), and by other names, is defined as a cement-based slurry, with a minimum of 20% (per volume) foam entrained into the plastic mortar. [1] As mostly no coarse aggregate is used for production of foam concrete the correct term would be called mortar instead of concrete; it may be called "foamed cement" as well. The density of foam concrete usually varies from 400 kg/m3 to 1600 kg/m3. The density is normally controlled by substituting all or part of the fine aggregate with the foam.

Contents

Terminology

It is also called foamed concrete, aircrete, foamcrete, cellular lightweight concrete or reduced density concrete.

History

The 1930s-era Smithy bridge used foamed concrete for infilling. Mbb canal smithy bridge.jpg
The 1930s-era Smithy bridge used foamed concrete for infilling.

The history of foam concrete dates back to the early 1920s and the production of autoclaved aerated concrete, which was used mainly as insulation. [2] A detailed study concerning the composition, physical properties and production of foamed concrete was first carried out in the 1950s and 60s. [3] [4] [5] Following this research, new admixtures were developed in the late 1970s and early 80s, which led to the commercial use of foamed concrete in construction projects. Initially, it was used in the Netherlands for filling voids and for ground stabilisation. Further research carried out in the Netherlands helped bring about the more widespread use of foam concrete as a building material. [6] More recently, foam concrete is being made with a continuous foam generator. The foam is produced by agitating a foaming agent with compressed air to make "aircrete" or "foamcrete". This material is fireproof, insect proof, and waterproof. It offers significant thermal and acoustic insulation and can be cut, carved, drilled and shaped with wood-working tools. This construction material can be used to make foundations, subfloors, building blocks, walls, domes, or even arches that can be reinforced with a construction fabric. [7]

Manufacturing

Foamed concrete typically consists of a slurry of cement or fly ash and sand and water, although some suppliers recommend pure cement and water with the foaming agent for very lightweight mixes. [8] This slurry is further mixed with a synthetic aerated foam in a concrete mixing plant. [9] The foam is created using a foaming agent, mixed with water and air from a generator. The foaming agent must be able to produce air bubbles with a high level of stability, resistant to the physical and chemical processes of mixing, placing and hardening.

Foamed concrete mixture may be poured or pumped into moulds, or directly into structural elements. The foam enables the slurry to flow freely due to the thixotropic behaviour of the foam bubbles, allowing it to be easily poured into the chosen form or mould. [9] The viscous material requires up to 24 hours to solidify (or as little as two hours if steam cured with temperatures up to 70 °C to accelerate the process. [10] [11] ), depending on variables including ambient temperature and humidity. Once solidified, the formed product may be released from its mold. A new application in foam concrete manufacturing is to cut large concrete cakes into blocks of different sizes by a cutting machine using special steel wires. The cutting action takes place before the concrete has fully cured.

Properties

A sample of foamed concrete used for measurement. Modeling-of-foamed-concrete.jpg
A sample of foamed concrete used for measurement.

Foam concrete is a versatile building material with a simple production method that is relatively inexpensive compared to autoclave aerated concrete. [1] Foam concrete compounds utilising fly ash in the slurry mix is cheaper still, and has less environmental impact. Foam concrete is produced in a variety of densities from 200 kg/m3 to 1,600 kg/m3 depending on the application. [1] Lighter density products may be cut into different sizes. While the product is considered a form of concrete (with air bubbles replacing aggregate), its high thermal and acoustical insulating qualities make it a very different application than conventional concrete.

Advantages

Applications

Foamed concrete can be produced with dry densities of 400 to 1600 kg/m3 (25 lb/ft3 to 100 lb/ft3), with 7-day strengths of approximately 1 to 10 N/mm2 (145 to 1450 psi) respectively. Foam concrete is fire resistant, and its thermal and acoustical insulation properties make it ideal for a wide range of purposes, from insulating floors and roofs, to void filling. It is also particularly useful for trench reinstatement. [9]

A few of the applications of foam concrete are:

Until the mid-1990s, foam concrete was regarded as weak and non-durable with high shrinkage characteristics. [1] This is due to the unstable foam bubbles resulted in foam concrete having properties unsuitable for producing very low density (Less than 300 kg/m3 dry density) as well as load bearing structural applications. It is therefore important to ensure that the air entrained into the foamed concrete is contained in stable, very tiny, uniform bubbles that remain intact and isolated, and do not thus increase the permeability of the cement paste between the voids.

The development of synthetic-enzyme based foaming agents, foam stability enhancing admixtures and specialised foam generating, mixing and pumping equipment has improved the stability of the foam and hence foam concrete, making it possible to manufacture as light as 75 kg/m3 density, a density that is just 7.5% of water. [13] The enzyme consists of highly active proteins of biotechnological origin not based on protein hydrolysis. [14] In recent years foamed concrete has been used extensively in highways, commercial buildings, disaster rehabilitation buildings, schools, apartments and housing developments in countries such as Germany, USA, Brazil, Singapore, India, Malaysia, Kuwait, Nigeria, Bangladesh, Botswana, Mexico, Indonesia, Libya, Saudi Arabia, Algeria, Iraq, Egypt and Vietnam.

Shock-absorption

Foamed concrete has been investigated for use as a bullet trap in high intensity US military firearm training ranges. [15] This work resulted in the product SACON being fielded by the U.S. Army Corps of Engineers, which when worn out, can be shipped directly to metal recycling facilities without requiring the separation of the trapped bullets, as the calcium carbonate in the concrete acts as a flux. [16]

The energy absorption capacity of foamed concrete was approximated from drop testing and found to vary from 4 to 15 MJ/m3 depending on its density. With optimum absorption estimated from a 1000 kg/m3 moderate density mix at water to cement (w/c) ratios from 0·6 to 0·7. [17]

Related Research Articles

<span class="mw-page-title-main">Perlite</span> Amorphous volcanic glass

Perlite is an amorphous volcanic glass that has a relatively high water content, typically formed by the hydration of obsidian. It occurs naturally and has the unusual property of greatly expanding when heated sufficiently. It is an industrial mineral, suitable "as ceramic flux to lower the sintering temperature", and a commercial product useful for its low density after processing.

<span class="mw-page-title-main">Polystyrene</span> Polymer resin widely used in packaging

Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It is a poor barrier to air and water vapor and has a relatively low melting point. Polystyrene is one of the most widely used plastics, with the scale of its production being several million tonnes per year. Polystyrene is naturally transparent, but can be colored with colorants. Uses include protective packaging, containers, lids, bottles, trays, tumblers, disposable cutlery, in the making of models, and as an alternative material for phonograph records.

<span class="mw-page-title-main">Sleeping pad</span>

In camping, a ground pad, sleeping pad, thermal pad, sleeping mat, or roll mat is lightweight pad, common among hikers, backpackers and budget travelers, often used in conjunction with a sleeping bag. Its purpose is to provide padding and thermal insulation. All types currently available use air as their primary form of insulation.

<span class="mw-page-title-main">Memory foam</span> Component primarily utilized for making cushions or mattresses

Memory foam consists mainly of polyurethane with additional chemicals that increase its viscosity and density. It is often referred to as "viscoelastic" polyurethane foam, or low-resilience polyurethane foam (LRPu). The foam bubbles or ‘cells’ are open, effectively creating a matrix through which air can move. Higher-density memory foam softens in reaction to body heat, allowing it to mold to a warm body in a few minutes. Newer foams may recover their original shape more quickly.

<span class="mw-page-title-main">Insulating concrete form</span>

Insulating concrete form or insulated concrete form (ICF) is a system of formwork for reinforced concrete usually made with a rigid thermal insulation that stays in place as a permanent interior and exterior substrate for walls, floors, and roofs. The forms are interlocking modular units that are dry-stacked and filled with concrete. The units lock together somewhat like Lego bricks and create a form for the structural walls or floors of a building. ICF construction has become commonplace for both low rise commercial and high performance residential construction as more stringent energy efficiency and natural disaster resistant building codes are adopted.

<span class="mw-page-title-main">Metal foam</span> Porous material made from a metal

In materials science, a metal foam is a material or structure consisting of a solid metal with gas-filled pores comprising a large portion of the volume. The pores can be sealed or interconnected. The defining characteristic of metal foams is a high porosity: typically only 5–25% of the volume is the base metal. The strength of the material is due to the square–cube law.

<span class="mw-page-title-main">Autoclaved aerated concrete</span> Lightweight, precast building material

Autoclaved aerated concrete (AAC) is a lightweight, precast, cellular concrete building material, eco-friendly, suitable for producing concrete-like blocks. It is composed of quartz sand, calcined gypsum, lime, portland cement, water and aluminium powder. AAC products are cured under heat and pressure in an autoclave. Developed in the mid-1920s, AAC simultaneously provides structure, insulation, and fire- and mold-resistance. Forms include blocks, wall panels, floor and roof panels, cladding (façade) panels and lintels. AAC is a highly durable material that can last for many years without requiring maintenance. It is also an excellent insulator that can help reduce energy costs by keeping buildings cool in the summer and warm in the winter. Additionally, AAC is resistant to fire and mold, making it a safe choice for construction.

<span class="mw-page-title-main">Foam rubber</span> Rubber manufactured with a foaming agent

Foam rubber refers to rubber that has been manufactured with a foaming agent to create an air-filled matrix structure. Commercial foam rubbers are generally made of synthetic rubber, natural latex or polyurethane. Latex foam rubber, used in mattresses, is well known for its endurance. Polyurethane is a thermosetting polymer that comes from combination of Methyl di-isocyanate and polyethylene and some other chemical additives.

Ceramic foam is a tough foam made from ceramics. Manufacturing techniques include impregnating open-cell polymer foams internally with ceramic slurry and then firing in a kiln, leaving only ceramic material. The foams may consist of several ceramic materials such as aluminium oxide, a common high-temperature ceramic, and gets insulating properties from the many tiny air-filled voids within the material.

<span class="mw-page-title-main">Building insulation material</span>

Building insulation materials are the building materials that form the thermal envelope of a building or otherwise reduce heat transfer.

<span class="mw-page-title-main">Spray foam</span> Building material

Spray foam is a chemical product created by two materials, isocyanate and polyol resin, which react when mixed with each other and expand up to 30-60 times its liquid volume after it is sprayed in place. This expansion makes it useful as a specialty packing material which forms to the shape of the product being packaged and produces a high thermal insulating value with virtually no air infiltration.

<span class="mw-page-title-main">Expanded clay aggregate</span> Lightweight aggregate made by heating clay at high temperature in a rotary kiln

Lightweight expanded clay aggregate (LECA) or expanded clay (exclay) is a lightweight aggregate made by heating clay to around 1,200 °C (2,190 °F) in a rotary kiln. The yielding gases expand the clay by thousands of small bubbles forming during heating producing a honeycomb structure. LECA has an approximately round or potato shape due to circular movement in the kiln and is available in different sizes and densities. LECA is used to make lightweight concrete products and other uses.

<span class="mw-page-title-main">Rigid panel</span>

Rigid panel insulation, also referred to as continuous insulation, can be made from foam plastics such as polyurethane (PUR), polyisocyanurate (PIR), and polystyrene, or from fibrous materials such as fiberglass, rock and slag wool. Rigid panel continuous insulation is often used to provide a thermal break in the building envelope, thus reducing thermal bridging.

<span class="mw-page-title-main">Hempcrete</span> Biocomposite material used for construction and insulation

Hempcrete or hemplime is biocomposite material, a mixture of hemp hurds (shives) and lime, sand, or pozzolans, which is used as a material for construction and insulation. It is marketed under names like Hempcrete, Canobiote, Canosmose, Isochanvre and IsoHemp. Hempcrete is easier to work with than traditional lime mixes and acts as an insulator and moisture regulator. It lacks the brittleness of concrete and consequently does not need expansion joints. Typically, hempcrete has good thermal and acoustic insulation capabilities, but low mechanical performance, specifically compressive strength. In addition, hempcrete's mechanical properties, when used in prefabricated blocks specifically, act as a carbon sink throughout its lifetime. The result is a lightweight insulating material, finishing plaster, or a non-load bearing wall, ideal for most climates as it combines insulation and thermal mass while providing a positive impact on the environment.

<span class="mw-page-title-main">Types of concrete</span> Building material consisting of aggregates cemented by a binder

Concrete is produced in a variety of compositions, finishes and performance characteristics to meet a wide range of needs.

Ultralight materials are solids with a density of less than 10 mg/cm3, including silica aerogels, carbon nanotube aerogels, aerographite, metallic foams, polymeric foams, and metallic microlattices. The density of air is about 1.275 mg/cm3, which means that the air in the pores contributes significantly to the density of these materials in atmospheric conditions. They can be classified by production method as aerogels, stochastic foams, and structured cellular materials.

<span class="mw-page-title-main">Foam glass</span> Porous glass foam material used as a building material

Foam glass is a porous glass foam material. Its advantages as a building material include its light weight, high strength, and thermal and acoustic insulating properties. It is made by heating a mixture of crushed or granulated glass and a blowing agent such as carbon or limestone. Near the melting point of the glass, the blowing agent releases a gas, producing a foaming effect in the glass. After cooling the mixture hardens into a rigid material with gas-filled closed-cell pores comprising a large portion of its volume.

Cementitious foam insulation is a cement-based thermal and acoustic insulation, with an R-value similar to that of fiberglass. It is installed as a foam with a consistency like shaving cream, or as pre-cast slabs. The current cost is similar to that of polyurethane foams.

Waste light concrete (WLC) is a type of light weight concrete where the traditional construction aggregates are replaced by a mix of shredded waste materials and a special group of additives. Used in infrastructure and building construction.

References

  1. 1 2 3 4 Foamed Concrete leaflet The Concrete Institute, Midrand, 2021
  2. Sach J and Seifert H (1999). Foamed concrete technology: possibilities for thermal insulation at high temperatures. CFI Forum of Technology, DKG 76, No. 9, pp 23–30.
  3. Valore RC. (1954). Cellular concrete part 1 composition and methods of production, ACI j ;50:773-96.
  4. Valore RC. (1954). Cellular RC, Cellular concrete part 2 physical properties. ACI J;50:817-36.
  5. Rudnai G. (1963). Lightweight concretes. Budapest, Akademikiado
  6. Van Deijk. Foam concrete. Concrete, July/August 1991, pp 49–54.
  7. "AirCrete". Domegaia.com.
  8. "Aerated Concrete, Lightweight Concrete, Cellular Concrete and Foamed Concrete". litebuilt.com. Retrieved 12 September 2015.
  9. 1 2 3 British Cement Association, Foamed Concrete Composition and Properties, British Cement Association, 1994.
  10. LithoPore Aerated Concrete Luca Industries International GmbH, Retrieved on 22 January 2015
  11. "Aerated Concrete, Lightweight Concrete, Cellular Concrete and Foamed Concrete". litebuilt.com. Retrieved 12 September 2015.
  12. 1 2 8 ADVANTAGES OF FOAM CONCRETE OVER OTHER MATERIALS
  13. 1 2 LithoPore™ Aerated Concrete 75 – 150 Kg/m3 Luca Industries International GmbH, Retrieved on 29 March 2016
  14. LithoPore™ True Technology Luca Industries International GmbH, Retrieved on 29 March 2016
  15. Fabian, Gene L.; O'Donnell, Richard H.; Tom, Joe G.; Malone, Philip G. (1996). Use of Shock-Absorbing Concrete (SACON) as an Environmentally Compatible Bullet-Trapping Medium on Small-Arms Training Ranges (PDF). Proceedings of the Tri-Service Environmental Technology Workshop, "Enhancing Readiness Through Environmental QualityTechnology". pp. 187–196. ADP017714. Archived (PDF) from the original on 20 August 2015.
  16. "Shock-Absorbing Concrete SACON Bullet Trap". Terran Corporation.
  17. Jones, M. Roderick; Zheng, Li (1 February 2013). "Energy absorption of foamed concrete from low-velocity impacts". Magazine of Concrete Research. 65 (4): 209–219. doi:10.1680/macr.12.00054 via icevirtuallibrary.com (Atypon).