A reinforced concrete column is a structural member designed to carry compressive loads, composed of concrete with an embedded steel frame to provide reinforcement. For design purposes, the columns are separated into two categories: short columns and slender columns.
The strength of short columns is controlled by the strength of the material and the geometry of the cross section. Reinforcing rebar is placed axially in the column to provide additional axial stiffness. Accounting for the additional stiffness of the steel, the nominal loading capacity Pn for the column in terms of the maximum compressive stress of the concrete fc', the yield stress of the steel fy, the gross cross section area of the column Ag, and the total cross section area of the steel rebar Ast
where the first term represents the load carried by the concrete and the second term represents the load carried by the steel. Because the yield strength of steel is an order of magnitude larger than that of concrete, a small addition of steel will greatly increase the strength of the column. [1]
To give a conservative estimate and build redundancies into the final structural system, the ACI Building Code Requirements give a maximum reduced design load of where is the strength reduction factor for the type of column used. For spiral columns
where . For tied columns
where . The additional reduction past the strength reduction factor is to account for any eccentricities in the loading of column. Distributing a load toward one end of the column will produce a moment in the column and prevent the entire cross section from carrying the load, thus producing high stress concentrations towards that end of the column.
Spiral columns are cylindrical columns with a continuous helical bar wrapping around the column. The spiral acts to provide support in the transverse direction and prevent the column from barreling. The amount of reinforcement is required to provide additional load-carrying capacity greater than or equal to that attributed from the shell as to compensate for the strength lost when the shell spalls off. With further thickening of the spiral rebar, the axially loaded concrete becomes the weakest link in the system and the strength contribution from the additional rebar does not take effect until the column has failed axially. At that point, the additional strength from spiral reinforcement engages and prevents catastrophic failure, instead giving rise to a much slower ductile failure. [2]
The ACI Building Code Requirements put the following restrictions on amount of spiral reinforcement.
ACI Code 7.10.4.2: For cast-in-place construction, size of spirals shall not be less than 3/8 in. diameter.
ACI Code 7.10.4.3: Clear spacing between spirals shall not exceed 3 in., nor be less than 1in.
Section 10.9.3 adds an additional lower limit to the amount of spiral reinforcement via the volumetric spiral reinforcement ratio ρs.
where Ach is the shell area, the cross-sectional area measured to the outside edges of transverse reinforcement. [3] P = f/A
Tied columns have closed lateral ties spaced approximately uniformly across the column. The spacing of the ties is limited in that they must be close enough to prevent barreling failure between them, and far enough apart that they do not interfere with the setting of the concrete. The ACI codebook puts an upward limit on the spacing between ties.
ACI Code 7.10.5: Vertical spacing of ties shall not exceed 16 longitudinal bar diameters, 48 tie bar or wire diameters, or least dimension of the compression member.
If the ties are spaced too far apart, the column will experience shearfailure and barrel in between the ties. [4]
Columns qualify as being slender when their cross sectional area is very small in proportion to their length. Unlike Short Columns, Slender Columns are limited by their geometry and will buckle before the concrete or steel reinforcement yields.
There are some analytical stress-strain models and damage indices for confined and unconfined concretes to simulate reinforced concrete columns that make possible without any experimental test to evaluate the stress-strain relationship and damage of confined and unconfined concretes situated inside and outside of stirrups. To see such models and simulations of columns subjected to the cyclic and monotonic loading, refer to the following links:, [5] [6] [7]
Machine learning (ML) is a subfield of artificial intelligence (AI) and an advanced form of data analysis and computation that employs the high elaboration speed and pattern recognition techniques of computers for knowledge output from data. In other words, it is a computer programming technique inspired by AI that allows computers to improve their learning abilities through data supplies or data access. This resembles the way human beings improve their intelligence in real life. There are four generalized categories of ML. To be more specific, there is supervised learning, semi-supervised learning, unsupervised learning and reinforcement learning. In supervised learning, the desired output is known by the trainer, where the trainer is the human being that can ascribe physical meaning to the data and characterize it by adding a tag or correcting system errors. The machine is trained based on inputs with tags that are connected to a corresponding output. Through this process, the machine develops a predictive model for the connection of this input to a certain output. This does not differ from the way that knowledge is learned in a classroom, with a teacher available to correct any errors. The mode of failure of structural members, such as reinforced concrete columns, depends on several factors, such as their geometric characteristics, the longitudinal reinforcement, the efficiency of confinement through the transverse reinforcement and the loading history. Their behavior throughout the loading range is controlled by competing mechanisms of resistance such as flexure, shear, buckling of longitudinal bars when they are subjected to compressive loads and, in the case of lap splices, the lap splice mechanism of the development of reinforcing bars. Very often, a combination of such mechanisms characterizes the macroscopic behavior of the column, especially in cases of cyclic load reversals. Various predictive models have been developed in the past to determine both the strength as well as the deformation capacity of the columns, with the uncertainty being at least one order of magnitude greater in terms of deformation capacity rather than strength, as evidenced by comparisons with test results. System identification and damage detection is a twofold area that utilizes ML to imitate a structural system and predict its deterministic seismic response. Laboratory tests of reinforced concrete (RC) structures have provided one source of data that enables ML methods to identify their failure modes, strength, capacities and constitutive behaviors [8]
Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.
Rebar, known when massed as reinforcing steel or reinforcement steel, is a steel bar used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface features a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined. These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.
In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.
Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength.
In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.
A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel-reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving
.Structural steel is a category of steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a profile of a specific cross section. Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries.
Concrete cover, in reinforced concrete, is the least distance between the surface of embedded reinforcement and the outer surface of the concrete. The concrete cover depth can be measured with a cover meter. The purpose of concrete cover is to protect the reinforcement from corrosion, fire, and other potential damage.
Anchor bolts are used to connect structural and non-structural elements to concrete. The connection can be made by a variety of different components: anchor bolts, steel plates, or stiffeners. Anchor bolts transfer different types of load: tension forces and shear forces.
Fiber-reinforced concrete or fibre-reinforced concrete (FRC) is concrete containing fibrous material which increases its structural integrity. It contains short discrete fibers that are uniformly distributed and randomly oriented. Fibers include steel fibers, glass fibers, synthetic fibers and natural fibers – each of which lend varying properties to the concrete. In addition, the character of fiber-reinforced concrete changes with varying concretes, fiber materials, geometries, distribution, orientation, and densities.
In structural engineering, deflection is the degree to which a part of a long structural element is deformed laterally under a load. It may be quantified in terms of an angle or a distance . A longitudinal deformation is called elongation.
A T-beam, used in construction, is a load-bearing structure of reinforced concrete, wood or metal, with a T-shaped cross section. The top of the T-shaped cross section serves as a flange or compression member in resisting compressive stresses. The web of the beam below the compression flange serves to resist shear stress. When used for highway bridges the beam incorporates reinforcing bars in the bottom of the beam to resist the tensile stresses which occur during bending.
An ironworker is a tradesman who works in the iron-working industry. Ironworkers assemble the structural framework in accordance with engineered drawings and install the metal support pieces for new buildings. They also repair and renovate old structures using reinforced concrete and steel. Ironworkers may work on factories, steel mills, and utility plants.
Concrete has relatively high compressive strength, but significantly lower tensile strength. The compressive strength is typically controlled with the ratio of water to cement when forming the concrete, and tensile strength is increased by additives, typically steel, to create reinforced concrete. In other words we can say concrete is made up of sand, ballast, cement and water.
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. This can be divided into compressive and adhesive forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. Frictional contact mechanics is the study of the deformation of bodies in the presence of frictional effects, whereas frictionless contact mechanics assumes the absence of such effects.
Reinforced concrete [RC] is concrete in which reinforcement bars ("rebars"), reinforcement grids, plates or fibers are embedded to create bond and thus to strengthen the concrete in tension. The composite material was invented by French gardener Joseph Monier in 1849 and patented in 1867.
In solid mechanics, a reinforced solid is a brittle material that is reinforced by ductile bars or fibres. A common application is reinforced concrete. When the concrete cracks the tensile force in a crack is not carried any more by the concrete but by the steel reinforcing bars only. The reinforced concrete will continue to carry the load provided that sufficient reinforcement is present. A typical design problem is to find the smallest amount of reinforcement that can carry the stresses on a small cube. This can be formulated as an optimization problem.
Arching or compressive membrane action (CMA) in reinforced concrete slabs occurs as a result of the great difference between the tensile and compressive strength of concrete. Cracking of the concrete causes a migration of the neutral axis which is accompanied by in-plane expansion of the slab at its boundaries. If this natural tendency to expand is restrained, the development of arching action enhances the strength of the slab. The term arching action is normally used to describe the arching phenomenon in one-way spanning slabs and compressive membrane action is normally used to describe the arching phenomenon in two-way spanning slabs.