The list of construction methods covers the processes and techniques used in the construction process. The construction method is essential for civil engineers; utilizing it appropriately can help to achieve the desired results. The term building refers to the creation of physical structures such as buildings, bridges or railways. One of the four types of buildings is residential and building methods are easiest to study in these structures.
Construction involves the creation of physical structures such as buildings, bridges or railways.
Bricks are small rectangular blocks that can be used to form parts of buildings, typically walls. Before 7,000 BC, bricks were formed from hand-molded mud and dried by the sun. During the Industrial Revolution, mass-produced bricks became a common alternative to stone. Stone was typically more expensive, less predictable and more difficult to handle. Bricks remain in common use. They are small and easy to handle, strong in compression, durable and low maintenance. They can be formed into complex shapes, providing ample opportunity for the construction of aesthetic designs.
The four basic types of structure are residential, institutional and commercial, industrial, and infrastructure/heavy. [1]
Residential buildings go through five main stages, including foundations, formwork, scaffolding, concrete work and reinforcement.
Foundations provide support for structures, transferring their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics to support them. There are four types of foundation depending on the bearing capacity. Civil engineers will often determine what type of foundation is suitable for the respective bearing capacity. [2]
The foundation construction method depends on considerations such as:
Shallow foundations are used where the loads forced by a structure are low relative to the bearing capacity of the surface soils. Deep foundations are needed where the bearing capacity of the surface soils is insufficient. Those loads need to be transferred to deeper layers with higher bearing capacity.
Raft foundations are slabs that cover a wide area, often the entire building footprint. They are suitable where ground conditions are too poor to create individual strip or pad foundations for a large number of individual loads. Raft foundations may combine beams to add support for specific loads.
Pile foundations are rectangular or circular pads used to support loads such as columns.
Strip foundations provide a continuous line of support to a linear structure such as a wall. Trench fill foundations are a variation of strip foundations. The trench excavation is almost completely filled with concrete. Rubble trench foundations are a further variation of trench fill foundations and are a traditional construction method that uses loose stone or rubble to minimise the use of concrete and improve drainage.
Formwork is used for the process of creating a mold into which concrete is poured and solidified. Traditional formwork is fabricated using wood, but it can employ steel, glass fibre, reinforced plastics and other materials. [3]
Formwork for beams takes the form of a box that is supported and propped in the correct position and level. The removal time for the formwork will vary with air temperature, humidity and consequent curing rate. Typical striking times are as follows (using air temperature of 7-16 °C):
This consists of a vertical mold of the desired shape and size matching the column to be poured. To keep the material thickness to a minimum, horizontal steel or timber clamps (or yokes) are used for batch filling and at varying centers for filling that is completed in one pour.
The head of the column can provide support for the beam formwork. Even though this gives good top lateral restraint, it can make the formwork complex. The column can be cast to the underside of the beams. A collar of formwork can be held around the cast column to complete the casting and support the incoming beam.
Falsework consists of temporary structures used to support a permanent structure. Falsework need to have accurate calculation. [4]
Rebar is a steel bar or mesh of steel wires used in reinforced concrete and masonry structures to strengthen and hold the concrete in tension. The surface of rebar is often patterned to improve the quality of the bond with the concrete. Rebar is necessary to add tensile strength, while concrete is strong in compression. It can support tensile loads and increase overall strength by casting rebar into concrete.
Concrete is typically used in commercial buildings and civil engineering projects, for its strength and durability. Concrete is a mix of cement and water plus an aggregate such as sand or stone. Its compression strength means it can support heavy weights. [5]
Insulating concrete forms (ICFs) cam be used for home construction. They are made by pouring concrete between rigid panels, often made out of polystyrene foam. Rebar can provide additional strength internally, and the exterior panels can remain in place once the concrete sets. It is essential to check the levels of foundation before pouring.
Bricks are laid with a mortar joint bonding them. The profile of the mortar can be varied depending on exposure or to create a specific visual effect. The most common profiles are flush (rag joint), bucket handle, weather struck, weather struck and cut and recessed.
The bonding pattern describes the alignment of the bricks. Many standard bond patterns have been defined, including stretcher bond. [6] [7] Each stretcher (brick laid lengthwise) is offset by half a brick relative to the courses above and below of English bond. Stretchers and headers are laid with alternating courses aligned to one another. American common bond is similar to the English bond but with one course of headers for every six stretcher courses. English cross bond has courses of stretchers and headers, but with the alternating stretcher courses offset by half a brick.
Flemish bond consists of alternating stretchers and headers in each course. Header bond has courses of headers offset by half a brick. Stack bond consists of bricks laid directly on top of one another with joints aligned. This is a weak bond and is likely to require reinforcement. Garden wall bond has three courses of stretchers then one course of headers. Sussex bond has three stretchers and one header in each course.
Masonry is the craft of building a structure with brick, stone, or similar material, including mortar plastering which are often laid in, bound and pasted together by mortar. The term masonry can also refer to the building units themselves.
Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.
Rebar, known when massed as reinforcing steel or reinforcement steel, is a steel bar used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface features a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.
Brickwork is masonry produced by a bricklayer, using bricks and mortar. Typically, rows of bricks called courses are laid on top of one another to build up a structure such as a brick wall.
In engineering, a foundation is the element of a structure which connects it to the ground or more rarely, water, transferring loads from the structure to the ground. Foundations are generally considered either shallow or deep. Foundation engineering is the application of soil mechanics and rock mechanics in the design of foundation elements of structures.
A concrete block, also known as a cinder block in North American English, breeze block in British English, concrete masonry unit (CMU), or by various other terms, is a standard-size rectangular block used in building construction. The use of blockwork allows structures to be built in the traditional masonry style with layers of staggered blocks.
This page is a list of construction topics.
Insulating concrete form or insulated concrete form (ICF) is a system of formwork for reinforced concrete usually made with a rigid thermal insulation that stays in place as a permanent interior and exterior substrate for walls, floors, and roofs. The forms are interlocking modular units that are dry-stacked and filled with concrete. The units lock together somewhat like Lego bricks and create a form for the structural walls or floors of a building. ICF construction has become commonplace for both low rise commercial and high performance residential construction as more stringent energy efficiency and natural disaster resistant building codes are adopted.
Falsework consists of temporary structures used in construction to support a permanent structure until its construction is sufficiently advanced to support itself. For arches, this is specifically called centering. Falsework includes temporary support structures for formwork used to mold concrete in the construction of buildings, bridges, and elevated roadways.
A concrete slab is a common structural element of modern buildings, consisting of a flat, horizontal surface made of cast concrete. Steel-reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings, while thinner mud slabs may be used for exterior paving
.Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.
Shoring is the process of temporarily supporting a building, vessel, structure, or trench with shores (props) when in danger of collapse or during repairs or alterations. Shoring comes from shore, a timber or metal prop. Shoring may be vertical, angled, or horizontal.
Structural steel is a category of steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a profile of a specific cross section. Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries.
Precast concrete is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site and maneuvered into place; examples include precast beams, and wall panels for tilt up construction. In contrast, cast-in-place concrete is poured into site-specific forms and cured on site.
A deep foundation is a type of foundation that transfers building loads to the earth farther down from the surface than a shallow foundation does to a subsurface layer or a range of depths. A pile or piling is a vertical structural element of a deep foundation, driven or drilled deep into the ground at the building site.
A shallow foundation is a type of building foundation that transfers structural load to the earth very near to the surface, rather than to a subsurface layer or a range of depths, as does a deep foundation. Customarily, a shallow foundation is considered as such when the width of the entire foundation is greater than its depth. In comparison to deep foundations, shallow foundations are less technical, thus making them more economical and the most widely used for relatively light structures.
Voided biaxial slabs, sometimes called biaxial slabs or voided slabs, are a type of reinforced concrete slab which incorporates air-filled voids to reduce the volume of concrete required. These voids enable cheaper construction and less environmental impact. Another major benefit of the system is its reduction in slab weight compared with regular solid decks. Up to 50% of the slab volume may be removed in voids, resulting in less load on structural members. This also allows increased weight and/or span, since the self-weight of the slab contributes less to the overall load.
Structural clay tile describes a category of burned-clay building materials used to construct roofing, walls, and flooring for structural and non-structural purposes, especially in fireproofing applications. Also called building tile, structural terra cotta, hollow tile, saltillo tile, and clay block, the material is an extruded clay shape with substantial depth that allows it to be laid in the same manner as other clay or concrete masonry. In North America it was chiefly used during the late 19th and early 20th centuries, reaching peak popularity at the turn of the century and declining around the 1950s. Structural clay tile grew in popularity in the end of the nineteenth-century because it could be constructed faster, was lighter, and required simpler flat falsework than earlier brick vaulting construction. Each unit is generally made of clay or terra-cotta with hollow cavities, or cells, inside it. The colors of terracotta transform from gray to orange, red, yellow, and cream tones. This is due to an effect of the firing process which hardens the clay so it can be used for structural purposes. The material is commonly used in floor arches, fireproofing, partition walls, and furring. It continues to be used in Europe to build fire-resistant walls and partitions. In North America the material has largely been replaced by concrete masonry units.
This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see glossary of engineering for a broad overview of the major concepts of engineering.
The Loddon Bridge disaster was a collapse of falsework during construction of a reinforced concrete deck on the Loddon Bridge of the A329(M) motorway in Berkshire, England, on 24 October 1972. It killed three people and injured ten others. It is thought that a design error led part of the falsework, transitioning between the deck and the supporting towers, to be understrength and it failed by buckling or twisting. The part-poured deck fell into the river below. The collapse was investigated by Her Majesty's Factory Inspectorate and the contractor, Marples Ridgway pleaded guilty to a breach of the construction regulations at a trial in Bracknell, being fined £150.