Burrow

Last updated
An Eastern chipmunk at the entrance of its burrow Chipmunk-burrow (exits).jpg
An Eastern chipmunk at the entrance of its burrow

A burrow is a hole or tunnel excavated into the ground by an animal to construct a space suitable for habitation or temporary refuge, or as a byproduct of locomotion. Burrows provide a form of shelter against predation and exposure to the elements, and can be found in nearly every biome and among various biological interactions. Many animal species are known to form burrows. These species range from small amphipods, [1] to very large vertebrate species such as the polar bear. [2] Burrows can be constructed into a wide variety of substrates and can range in complexity from a simple tube a few centimeters long to a complex network of interconnecting tunnels and chambers hundreds or thousands of meters in total length; an example of the latter level of complexity, a well-developed burrow, would be a rabbit warren.

Contents

Vertebrate burrows

A black-tailed prairie dog, with young, emerges from its burrow Prariehund P1010308.JPG
A black-tailed prairie dog, with young, emerges from its burrow

A large variety of vertebrates construct or use burrows in many types of substrate; burrows can range widely in complexity. Some examples of vertebrate burrowing animals include a number of mammals, amphibians, fish (dragonet and lungfish [3] ), reptiles, and birds (including small dinosaurs [4] ). Mammals are perhaps most well known for burrowing. Mammal species such as Insectivora like the mole, and rodents like the gopher, great gerbil and groundhog are often found to form burrows. Some other mammals that are known to burrow are the platypus, pangolin, pygmy rabbit, armadillo, rat and weasel. [5] Some rabbits, members of the family Leporidae, are well-known burrowers. Some species such as the groundhog can construct burrows that occupy a full cubic metre, displacing about 300 kilograms (660 lb) of dirt. [6] There is evidence that rodents may construct the most complex burrows of all vertebrate burrowing species. [7] For example, great gerbils live in family groups in extensive burrows, which can be seen on satellite images. Even the unoccupied burrows can remain visible in the landscape for years. The burrows are distributed regularly, although the occupied burrows appear to be clustered in space. [8] [9] Even Carnivora like the meerkat, and marsupials, such as wombats [10] are burrowers. The largest burrowing animal is probably the polar bear when it makes its maternity den in snow or earth. [11] Lizards are also known to construct and live in burrows, and may exhibit territorial behaviour over the burrows as well. There is also evidence that a burrow provides protection for the Adelaide pygmy blue-tongue skink (Tiliqua adelaidensis) when fighting, as they may fight from inside their burrows. [12]

Burrows by birds are usually made in soft soils; some penguins and other pelagic seabirds are noted for such burrows. The Magellanic penguin is an example, constructing burrows along coastal Patagonian regions of Chile and Argentina. [13] Other burrowing birds are puffins, kingfishers, and bee-eaters.

Bird burrows on the Volga shore near Kstovo, Russia C0136-bird-burrrows.jpg
Bird burrows on the Volga shore near Kstovo, Russia

Kangaroo mice construct burrows in fine sand.

Invertebrate burrows

Scabies mites construct their burrows in the skin of the infested animal or human. Termites and some wasps construct burrows in the soil and wood. Ants construct burrows in the soil. Some sea urchins and clams can burrow into rock.

The burrows produced by invertebrate animals can be filled actively or passively. Dwelling burrows which remain open during the occupation by an organism are filled passively, by gravity rather than by the organism. Actively filled burrows, on the other hand, are filled with material by the burrowing organism itself. [14]

The establishment of an invertebrate burrow often involves the soaking of surrounding sediment in mucus to prevent collapse and to seal off water flow. [14]

Examples of burrowing invertebrates are insects, spiders, sea urchins, crustaceans, clams and worms.

Excavators, modifiers, and occupants

Burrowing animals can be divided into three categories: primary excavators, secondary modifiers and simple occupants. [15] Primary excavators are the animals that originally dig and construct the burrow, and are generally very strong. [16] Some animals considered to be primary excavators are the prairie dog and the aardvark. [16] Pygmy gerbils are an example of secondary modifiers, as they do not build an original burrow, but will live inside a burrow made by other animals and improve or change some aspects of the burrow for their own purpose. [16] The third category, simple occupants, neither build nor modify the burrow but simply live inside or use it for their own purpose. [16] Some species of bird make use of burrows built by tortoises, which is an example of simple occupancy. [16] These animals can also be referred to as commensals. [16]

Protection

Crustacean burrows in a Jurassic limestone, southern Israel ThalassinoidesIsrael.JPG
Crustacean burrows in a Jurassic limestone, southern Israel

Some species may spend the majority of their days inside a burrow, indicating it must have good conditions and provide some benefit to the animal. [17] Burrows may be used by certain species as protection from harsh conditions, [18] or from predators. [12] Burrows may be found facing the direction of sunlight or away from the direction of cold wind. [19] This could help with heat retention and insulation, providing protection from temperatures and conditions outside. [19] Insects such as the earwig may construct burrows to live in during winter, and use them for physical protection. [18] Some species will also use burrows to store and protect food. This provides a benefit to the animal as it can keep food away from other competition. [17] It also allows the animal to keep a good stock of food inside the burrow to avoid extreme weather conditions or seasons where certain food sources may be unavailable. [17] Additionally, burrows can protect to animals that have just had their young, providing good conditions and safety for vulnerable newborn animals. [17] Burrows may also provide shelter to animals residing in areas frequently destroyed by fire, as animals deep underground in a burrow may be kept dry, safe and at a stable temperature. [19]

Fossil burrows

Burrows are also commonly preserved in the fossil record as burrow fossils, a type of trace fossil.

See also

Related Research Articles

<span class="mw-page-title-main">Chordate</span> Phylum of animals having a dorsal nerve cord

A chordate is a deuterostomic animal belonging to the phylum Chordata. All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics (synapomorphies) that distinguish them from other taxa. These five synapomorphies are a notochord, a hollow dorsal nerve cord, an endostyle or thyroid, pharyngeal slits, and a post-anal tail. The name "chordate" comes from the first of these synapomorphies, the notochord, which plays a significant role in chordate body plan structuring and movements. Chordates are also bilaterally symmetric, have a coelom, possess a closed circulatory system, and exhibit metameric segmentation.

<span class="mw-page-title-main">Invertebrate</span> Animals without a vertebral column

Invertebrates is an umbrella term describing animals that neither develop nor retain a vertebral column, which evolved from the notochord. It is a paraphyletic grouping including all animals excluding the chordate subphylum Vertebrata, i.e. vertebrates. Well-known phyla of invertebrates include arthropods, mollusks, annelids, echinoderms, flatworms, cnidarians and sponges.

<span class="mw-page-title-main">Mammal</span> Class of animals with milk-producing glands

A mammal is a vertebrate animal of the class Mammalia. Mammals are characterized by the presence of milk-producing mammary glands for feeding their young, a neocortex region of the brain, fur or hair, and three middle ear bones. These characteristics distinguish them from reptiles and birds, from which their ancestors diverged in the Carboniferous Period over 300 million years ago. Around 6,400 extant species of mammals have been described and divided into 29 orders.

<span class="mw-page-title-main">Jerboa</span> Family of rodents

Jerboas are hopping desert rodents found throughout North Africa and Asia, and are members of the family Dipodidae. They tend to live in hot deserts.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity by lifeforms but not the preserved remains of the organism itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.

<span class="mw-page-title-main">Muridae</span> Family of rodents

The Muridae, or murids, are the largest family of rodents and of mammals, containing approximately 1,383 species, including many species of mice, rats, and gerbils found naturally throughout Eurasia, Africa, and Australia.

<span class="mw-page-title-main">Cricetidae</span> Family of rodents

The Cricetidae are a family of rodents in the large and complex superfamily Muroidea. It includes true hamsters, voles, lemmings, muskrats, and New World rats and mice. At almost 608 species, it is the second-largest family of mammals, and has members throughout the Americas, Europe and Asia.

<span class="mw-page-title-main">Bioturbation</span> Reworking of soils and sediments by organisms.

Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a primary driver of biodiversity. The formal study of bioturbation began in the 1800s by Charles Darwin experimenting in his garden. The disruption of aquatic sediments and terrestrial soils through bioturbating activities provides significant ecosystem services. These include the alteration of nutrients in aquatic sediment and overlying water, shelter to other species in the form of burrows in terrestrial and water ecosystems, and soil production on land.

Spatial ecology studies the ultimate distributional or spatial unit occupied by a species. In a particular habitat shared by several species, each of the species is usually confined to its own microhabitat or spatial niche because two species in the same general territory cannot usually occupy the same ecological niche for any significant length of time.

<span class="mw-page-title-main">Great gerbil</span> Species of rodent

The great gerbil is a large rodent found throughout much of Central Asia.

<span class="mw-page-title-main">Fossorial</span> Animal adapted to digging and living underground

A fossorial animal is one that is adapted to digging and which lives primarily underground. Examples of fossorial vertebrates are badgers, naked mole-rats, meerkats, and mole salamanders. Among invertebrates, many molluscs, insects, and arachnids are fossorial.

<i>Diictodon</i> Extinct genus of dicynodonts

Diictodon is an extinct genus of pylaecephalid dicynodont that lived during the Late Permian period, approximately 255 million years ago. Fossils have been found in the Cistecephalus Assemblage Zone of the Madumabisa Mudstone of the Luangwa Basin in Zambia and the Tropidostoma Assemblage Zone of the Teekloof Formation, Tapinocephalus Assemblage Zone of the Abrahamskraal Formation, Dicynodon Assemblage Zone of the Balfour Formation, Cistecephalus Assemblage Zone of the Middleton or Balfour Formation of South Africa and the Guodikeng Formation of China. Roughly half of all Permian vertebrate specimens found in South Africa are those of Diictodon. This small herbivorous animal was one of the most successful synapsids in the Permian period.

Spatial epidemiology is a subfield of epidemiology focused on the study of the spatial distribution of health outcomes; it is closely related to health geography.

<span class="mw-page-title-main">Species distribution</span> Geographical area in which a species can be found

Species distribution, or speciesdispersion, is the manner in which a biological taxon is spatially arranged. The geographic limits of a particular taxon's distribution is its range, often represented as shaded areas on a map. Patterns of distribution change depending on the scale at which they are viewed, from the arrangement of individuals within a small family unit, to patterns within a population, or the distribution of the entire species as a whole (range). Species distribution is not to be confused with dispersal, which is the movement of individuals away from their region of origin or from a population center of high density.

Spatial descriptive statistics is the intersection of spatial statistics and descriptive statistics; these methods are used for a variety of purposes in geography, particularly in quantitative data analyses involving Geographic Information Systems (GIS).

<span class="mw-page-title-main">Rodent</span> Order of mammals

Rodents are mammals of the order Rodentia, which are characterized by a single pair of continuously growing incisors in each of the upper and lower jaws. About 40% of all mammal species are rodents. They are native to all major land masses except for New Zealand, Antarctica, and several oceanic islands, though they have subsequently been introduced to most of these land masses by human activity.

<span class="mw-page-title-main">Pain in cephalopods</span> Contentious issue

Pain in cephalopods is a contentious issue. Pain is a complex mental state, with a distinct perceptual quality but also associated with suffering, which is an emotional state. Because of this complexity, the presence of pain in non-human animals, or another human for that matter, cannot be determined unambiguously using observational methods, but the conclusion that animals experience pain is often inferred on the basis of likely presence of phenomenal consciousness which is deduced from comparative brain physiology as well as physical and behavioural reactions.

<span class="mw-page-title-main">Egg predation</span> Feeding strategy for many animals

Egg predation is a feeding strategy in many groups of animals (ovivores) in which they consume eggs. Since an egg represents a complete organism at one stage of its life cycle, eating an egg is a form of predation, the killing of another organism for food.

In evolutionary biology, mimicry in vertebrates is mimicry by a vertebrate of some model, deceiving some other animal, the dupe. Mimicry differs from camouflage as it is meant to be seen, while animals use camouflage to remain hidden. Visual, olfactory, auditory, biochemical, and behavioral modalities of mimicry have been documented in vertebrates.

Communal burrow refers to the habitat built by some species of mammals as a community habitat. There are some species that build burrows, but not communal burrows; and there are some species that live in communal groups, but do not construct burrows or any other type of habitat.

References

  1. Jones, S. E.; Jago, C. F. (1993-01-01). "In situ assessment of modification of sediment properties by burrowing invertebrates". Marine Biology. 115 (1): 133–142. Bibcode:1993MarBi.115..133J. doi:10.1007/BF00349395. ISSN   1432-1793. S2CID   85234722.
  2. Jonkel, Charles J.; Kolenosky, George B.; Robertson, Richard J.; Russell, Richard H. (1972). "Further Notes on Polar Bear Denning Habits". Bears: Their Biology and Management. 2: 142–158. doi:10.2307/3872578. ISSN   1936-0614. JSTOR   3872578.
  3. Dubiel, Russel; Blodgett, Robert H; Bown, Thomas M (May 1987). "Lungfish Burrows in the Upper Triassic Chinle and Dolores Formations, Colorado Plateau". Journal of Sedimentary Petrology. 57: 512–521.
  4. Varricchio, David J.; Martin, Anthony J.; Katsura, Yoshihiro (2007). "First trace and body fossil evidence of a burrowing, denning dinosaur". Proceedings of the Royal Society B: Biological Sciences . 274 (1616): 1361–1368. doi:10.1098/rspb.2006.0443. PMC   2176205 . PMID   17374596.
  5. O. J., Reichman, Stan. C. Smith (1990). Current Mammalogy. New York and London: Plenum Press. pp. 369–416.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. Harrington, Monica (April 2014). "What a woodchuck could chuck". Lab Animal. 43 (4): 117. doi: 10.1038/laban.516 . PMID   24651779. S2CID   26461588.
  7. O. J., Reichman, Stan. C. Smith (1990). Current Mammalogy. New York and London: Plenum Press. pp. 369–416.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. Wilschut, L.I.; Addink, E.A.; Heesterbeek, J.A.P.; Dubyanskiy, V.M.; Davis, S.A.; Laudisoit, A.; Begon, M.; Burdelov, L.; Atshabar, B.B.; de Jong, S.M. (2013). "Mapping the distribution of the main host for plague in a complex landscape in Kazakhstan: An object-based approach using SPOT-5 XS, Landsat 7 ETM+, SRTM and multiple Random Forests". International Journal of Applied Earth Observation and Geoinformation. 23 (100): 81–94. Bibcode:2013IJAEO..23...81W. doi:10.1016/j.jag.2012.11.007. PMC   4010295 . PMID   24817838.
  9. Wilschut, L.I; Laudisoit, A.; Hughes, N.; Addink, E.A.; de Jong, S.M.; Heesterbeek, J.A.P.; Reijniers, J.; Eagle, S.; Dubyanskiy, V.M.; Begon, M. (2015). "Spatial distribution patterns of plague hosts : point pattern analysis of the burrows of great gerbils in Kazakhstan". Journal of Biogeography. 42 (7): 1281–1292. Bibcode:2015JBiog..42.1281W. doi:10.1111/jbi.12534. PMC   4737218 . PMID   26877580.
  10. Old JM, Hunter NE, Wolfenden J (2018). Who utilises bare-nosed wombat burrows? Australian Zoologist. 39, 409-413. DOI: 10.7882/AZ.2018.006
  11. "burrow". National Geographic Society . 2012-06-06. Retrieved 2018-01-05.
  12. 1 2 Fenner, A. L., Bull, C. M. (August 17, 2010), Central-place territorial defence in a burrow-dwelling skink: aggressive responses to conspecific models in pygmy bluetongue lizards{{citation}}: CS1 maint: multiple names: authors list (link)
  13. C. Michael Hogan, (2008) Magellanic penguin, Globaltwitcher.com, ed. Nicklas Stromberg
  14. 1 2 Donovan, Stephen K., ed. (1994). The Palaeobiology of Trace Fossils. John Wiley & Sons. ISBN   0-471-94843-8.
  15. Mukherjee, Aditi., Pilakandy, Rajan., Kumara Honnavalli Nagaraj., Manchi, Shirish S., Bhupathy, Subramanian. (June 2017). "Burrow characteristics and its importance in occupancy of burrow dwelling vertebrates in Semiarid area of Keoladeo National Park, Rajasthan, India". Journal of Arid Environments . 141: 7–15. Bibcode:2017JArEn.141....7M. doi:10.1016/j.jaridenv.2017.02.003.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. 1 2 3 4 5 6 Kinlaw, Al (1999). "A review of burrowing by semi-fossorial vertebrates in arid environments". Journal of Arid Environments. 41 (2): 127–145. Bibcode:1999JArEn..41..127K. doi:10.1006/jare.1998.0476 via Elsevier Science Direct.
  17. 1 2 3 4 O. J., Reichman, Stan. C. Smith (1990). Current Mammalogy. New York and London: Plenum Press. pp. 369–416.{{cite book}}: CS1 maint: multiple names: authors list (link)
  18. 1 2 Körner, Maximilian; Foitzik, Susanne; Meunier, Joël (2018). "Extended winters entail long-term costs for insect offspring reared in an overwinter burrow" (PDF). Journal of Thermal Biology. 74: 116–122. doi:10.1016/j.jtherbio.2018.03.021. PMID   29801616. S2CID   44067573.
  19. 1 2 3 Torres, M. Rocío; Borghi, Carlos E.; Giannoni, Stella M.; Pattini, Andrea (May 2003). "Portal Orientation and Architecture of Burrows in Tympanoctomys barrerae (Rodentia, Octodontidae)". Journal of Mammalogy. 84 (2): 541–546. doi: 10.1644/1545-1542(2003)084<0541:poaaob>2.0.co;2 . hdl: 11336/96235 . ISSN   0022-2372.