Pit crater

Last updated
Kilauea with Halema`uma`u Caldera of Kilauea with Halemaumau.jpg
Kilauea with Halemaʻumaʻu
Deep pit crater on Hualalai Hawaii Hualalai pit crater Na One.jpg
Deep pit crater on Hualalai Hawaii

A pit crater (also called a subsidence crater or collapse crater) is a depression formed by a sinking or collapse of the surface lying above a void or empty chamber, rather than by the eruption of a volcano or lava vent. [1] Pit craters are found on Mercury, Venus, [2] [3] Earth, Mars, [4] and the Moon. [5] Pit craters are often found in a series of aligned or offset chains and in these cases, the features is called a pit crater chain. Pit crater chains are distinguished from catenae or crater chains by their origin. When adjoining walls between pits in a pit crater chain collapse, they become troughs. In these cases, the craters may merge into a linear alignment and are commonly found along extensional structures such as fractures, fissures and graben. Pit craters usually lack an elevated rim as well as the ejecta deposits and lava flows that are associated with impact craters. [6] [7] Pit craters are characterized by vertical walls that are often full of fissures and vents. They usually have nearly circular openings. [8]

As distinct from impact craters, these craters are not formed from the clashing of bodies or projectiles from space. [6] Rather, they can be formed by a lava explosion from a bottled up volcano (the explosion leaving a shallow caldera) or when the ceiling over a void is not solid enough to prevent collapse of the overlying material. Pit craters can also result from collapse of lava tubes or dikes, or from collapsed magma chambers under loose material. [9]

A newly formed pit crater has steep overhanging sides and is shaped inside like an inverted cone, growing wider closer to the bottom. Over time the overhangs fall into the pit and the crater fills with talus from the collapsing sides and roof. A middle-aged pit crater is cylindrical but its rim will continue to collapse, resulting in the crater's expanding outward until it resembles a funnel or drain—narrower at the bottom than the top. [7] [8]

While pit craters and calderas form through similar processes, the former term is usually reserved for smaller features of a mile or less in diameter. [10] The term "pit crater" was coined by C. Wilkes in 1845 to describe craters along Hawaii's East Rift Zone. [11]

Hawaii is known for its volcanoes and pit craters. In 1868 an eyewitness saw more than two-thirds of the basin of Kilauea cave in and fill with a lava lake. This process happened repeatedly. The modern Halema'uma'u Shield began growing and then collapsed into a deep funnel-shaped pit. This pit filled with lava and for 19 years burned continuously, becoming famous as the Hawaiian Fire Pit. In 1924 the lava lake emptied when the walls of the crater cracked and collapsed and filled with water that turned to steam. After a week and a half Halema'uma'u had widened and was 1,700 feet deep. Rocks that were blasted away from the crater can still be seen on the caldera floor. [10]

Western rim of Devil's Throat pit crater in June 2016 Devil's throat pit crater.jpg
Western rim of Devil's Throat pit crater in June 2016

Devil's Throat (pictured at right) is another good Hawaiian example of a pit crater, especially since we were able to observe its formation through collapse over time. It was first documented by Thomas Jaggar who estimated its dimensions as 15m x 10.5m x 75m. In 1923 William Sinclair was lowered into Devil's Throat on a rope. He found a cavern shaped like an upside down funnel which widened as he approached the bottom. He measured the floor as about 60m in diameter and the crater's depth around 78m. The crater's mouth widened over time and in 2006 the crater's dimensions were measured as 50m x 42m x 49m. This growth is explained by observing pieces of the overhanging roof breaking off and falling to the bottom. These shards gradually piled up on the crater floor, reducing its depth. [12]

The process also happens on the surface of Mars and other terrestrial planets. [6] Features resembling pit craters have been observed on Mercury.

Related Research Articles

A caldera is a large cauldron-like hollow that forms shortly after the emptying of a magma chamber in a volcanic eruption. When large volumes of magma are erupted over a short time, structural support for the rock above the magma chamber is lost. The ground surface then collapses into the emptied or partially emptied magma chamber, leaving a large depression at the surface. Although sometimes described as a crater, the feature is actually a type of sinkhole, as it is formed through subsidence and collapse rather than an explosion or impact. Compared to the thousands of volcanic eruptions that occur each century, the formation of a caldera is a rare event, occurring only a few times per century. Only seven caldera-forming collapses are known to have occurred between 1911 and 2016. More recently, a caldera collapse occurred at Kīlauea, Hawaii in 2018.

<span class="mw-page-title-main">Mauna Loa</span> Volcano in Hawaii, United States

Mauna Loa is one of five volcanoes that form the Island of Hawaii in the U.S. state of Hawaiʻi in the Pacific Ocean. The largest subaerial volcano in both mass and volume, Mauna Loa has historically been considered the largest volcano on Earth, dwarfed only by Tamu Massif. It is an active shield volcano with relatively gentle slopes, with a volume estimated at 18,000 cubic miles (75,000 km3), although its peak is about 125 feet (38 m) lower than that of its neighbor, Mauna Kea. Lava eruptions from Mauna Loa are silica-poor and very fluid, and they tend to be non-explosive.

<span class="mw-page-title-main">Haleakalā</span> Massive shield volcano in Hawaii

Haleakalā, or the East Maui Volcano, is a massive shield volcano that forms more than 75% of the Hawaiian Island of Maui. The western 25% of the island is formed by another volcano, Mauna Kahalawai, also referred to as the West Maui Mountains.

<span class="mw-page-title-main">Shield volcano</span> Low-profile volcano usually formed almost entirely of fluid lava flows

A shield volcano is a type of volcano named for its low profile, resembling a warrior's shield lying on the ground. It is formed by the eruption of highly fluid lava, which travels farther and forms thinner flows than the more viscous lava erupted from a stratovolcano. Repeated eruptions result in the steady accumulation of broad sheets of lava, building up the shield volcano's distinctive form.

<span class="mw-page-title-main">Kīlauea</span> Active volcano in Hawaii

Kīlauea is an active shield volcano in the Hawaiian Islands. Located along the southeastern shore of the Big Island of Hawaiʻi, the volcano is between 210,000 and 280,000 years old and emerged above sea level about 100,000 years ago. Historically, it is the most active of the five volcanoes that together form Hawaii island. Kīlauea is also one of the most active volcanoes on Earth, and the most recent and currently ongoing eruption began on September 29, 2021, when several vents began to erupt lava within Halemaʻumaʻu, a pit crater in the volcano's summit caldera.

<span class="mw-page-title-main">Hawaiʻi Volcanoes National Park</span> National park of the United States

Hawaiʻi Volcanoes National Park is an American national park located in the U.S. state of Hawaii on the island of Hawaii. The park encompasses two active volcanoes: Kīlauea, one of the world's most active volcanoes, and Mauna Loa, the world's most massive shield volcano. The park provides scientists with insight into the development of the Hawaiian Islands and access for studies of volcanism. For visitors, the park offers dramatic volcanic landscapes, glimpses of rare flora and fauna, and a view into the traditional Hawaiian culture connected to these landscapes.

<span class="mw-page-title-main">Ascraeus Mons</span> Martian volcano

Ascraeus Mons is a large shield volcano located in the Tharsis region of the planet Mars. It is the northernmost and tallest of three shield volcanoes collectively known as the Tharsis Montes.

<span class="mw-page-title-main">Phreatic eruption</span> Volcanic eruption caused by an explosion of steam

A phreatic eruption, also called a phreatic explosion, ultravulcanian eruption or steam-blast eruption, occurs when magma heats ground water or surface water. The extreme temperature of the magma causes near-instantaneous evaporation of water to steam, resulting in an explosion of steam, water, ash, rock, and volcanic bombs. At Mount St. Helens in Washington state, hundreds of steam explosions preceded the 1980 Plinian eruption of the volcano. A less intense geothermal event may result in a mud volcano.

<span class="mw-page-title-main">Puʻu ʻŌʻō</span> Volcanic cone in the Hawaiian Islands

Puʻu ʻŌʻō is a volcanic cone on the eastern rift zone of Kīlauea volcano in the Hawaiian Islands. The eruption that created Puʻu ʻŌʻō began on January 3, 1983, and continued nearly continuously until April 30, 2018, making it the longest-lived rift-zone eruption of the last two centuries.

<span class="mw-page-title-main">Puna, Hawaii</span>

Puna is one of the 9 districts of Hawaii County on the Island of Hawaiʻi. It is located on the windward side of the island and shares borders with South Hilo district in the north and Kaʻū district in the west. With a size of just under 320,000 acres (1,300 km2) or 500 sq. miles. Puna is slightly smaller than the island of Kauaʻi.

<span class="mw-page-title-main">Mauna Ulu</span>

Mauna Ulu is a volcanic cone in the eastern rift zone of the Kīlauea volcano on the island of Hawaii. It falls within the bounds of Hawaiʻi Volcanoes National Park. Mauna Ulu was in a state of eruption from May 1969 to July 1974.

<span class="mw-page-title-main">Maat Mons</span> Volcano on Venus

Maat Mons is a massive shield volcano on the planet Venus and the planet's second-highest mountain and highest volcano. It rises 8 kilometres (5.0 mi) above the mean planetary radius at 0.5°N 194.6°E, and nearly 5 km above the surrounding plains. It is named after the Egyptian goddess of truth and justice, Ma'at.

<span class="mw-page-title-main">Hawaiian eruption</span> Effusive volcanic eruption

A Hawaiian eruption is a type of volcanic eruption where lava flows from the vent in a relatively gentle, low level eruption; it is so named because it is characteristic of Hawaiian volcanoes. Typically they are effusive eruptions, with basaltic magmas of low viscosity, low content of gases, and high temperature at the vent. Very small amounts of volcanic ash are produced. This type of eruption occurs most often at hotspot volcanoes such as Kīlauea on Hawaii's big island and in Iceland, though it can occur near subduction zones and rift zones. Another example of Hawaiian eruptions occurred on the island of Surtsey in Iceland from 1964 to 1967, when molten lava flowed from the crater to the sea.

<span class="mw-page-title-main">Kīlauea Iki</span> Volcano crater

Kīlauea Iki is a pit crater that is next to the main summit caldera of Kīlauea on the island of Hawaiʻi in the Hawaiian Islands. It is known for its eruption in 1959 that started on November 14th and ended on December 20th, producing lava fountaining up to 1900 feet and a lava lake in the crater. Today, the surface of the lava lake has cooled and it is now a popular hiking destination to view the aftermath of an eruption.

<span class="mw-page-title-main">Chain of Craters Road</span> Road in Hawaii

Chain of Craters Road is a 19-mile (31 km) long winding paved road through the East Rift and coastal area of the Hawaii Volcanoes National Park on the island of Hawaii, in the state of Hawaii, United States. The original road, built in 1928, connected Crater Rim Drive to Makaopuhi Crater. The road was lengthened to reach the tiny town of Kalapana in 1959. As of 2018, the road has had parts covered by lava in 41 of the past 53 years, due to eruptions of Kīlauea volcano.

<span class="mw-page-title-main">Halemaʻumaʻu</span> Pit crater located within the summit caldera of Kīlauea in Hawaii

Halemaʻumaʻu is a pit crater within the much larger Kīlauea Caldera at the summit of Kīlauea volcano on island of Hawaiʻi. The roughly circular crater was 770 meters (2,530 ft) x 900 m (2,950 ft) before collapses that roughly doubled the size of the crater after May 3, 2018. Following the collapses of 2018, the bottom of Halemaʻumaʻu was roughly 600 m (2,000 ft) below the caldera floor. Halemaʻumaʻu is home to Pele, goddess of fire and volcanoes, according to the traditions of Hawaiian religion. Halemaʻumaʻu means "house of the ʻāmaʻu fern".

<span class="mw-page-title-main">Tharsis Tholus</span> Martian volcano

Tharsis Tholus is an intermediate-sized shield volcano located in the eastern Tharsis region of the planet Mars. The volcano was discovered by the Mariner 9 spacecraft in 1972 and originally given the informal name Volcano 7. In 1973, the International Astronomical Union (IAU) officially designated it Tharsis Tholus. In planetary geology, tholus is the term for a small domical mountain, usually a volcano.

<span class="mw-page-title-main">2018 lower Puna eruption</span>

The 2018 lower Puna eruption was a volcanic event on the island of Hawaiʻi, on Kīlauea volcano's East Rift Zone that began on May 3, 2018. It is related to the larger eruption of Kīlauea that began on January 3, 1983, though some volcanologists and USGS scientists have discussed whether to classify it as a new eruption. Outbreaks of lava fountains up to 300 feet (90 m) high, lava flows, and volcanic gas in the Leilani Estates subdivision were preceded by earthquakes and ground deformation that created cracks in the roads.

<span class="mw-page-title-main">1975 eruption of Mauna Loa</span> 1975 volcanic euruptiom

The 1975 eruption of Mauna Loa was a short-lived Hawaiian eruption that followed 25 years of quiescence at the Hawaiian volcano Mauna Loa. The eruption began just before midnight on July 5 and involved fissures extending across the length of Moku‘āweoweo, Mauna Loa's summit caldera, and into the upper ends of the volcano's northeast and southwest rift zones. After only 6 hours, activity in Moku‘āweoweo and on the southwest rift zone ended, but lava fountaining continued along the northeast rift zone until 7:30 p.m. on July 6, when all activity ceased.

<span class="mw-page-title-main">Kīlauea Caldera</span> Crater of a shield volcano in the Hawaii

The Kīlauea Caldera, officially gazetted as Kīlauea Crater, is a caldera located at the summit of Kīlauea, an active shield volcano in the Hawaiian Islands. It has an extreme length of 2.93 mi (4.72 km), an extreme width of 1.95 mi (3.14 km), a circumference of 7.85 mi (12.63 km) and an area of 4.14 sq mi (10.7 km2). It contains Halemaʻumaʻu, an active pit crater near the caldera's southwestern edge.

References

  1. "Volcanic and Geologic Terms". volcano.und.edu. Archived from the original on 2008-05-14. Retrieved 2008-04-12.
  2. Davey; et al. "Pit Crater Chain Clustering in Ganaki Planitia, Venus: Observations and Implications" (PDF). LPSC.
  3. Davey, S.C.; Ernst, R.E.; Samson, C.; Grosfils, E.B. (8 January 2013). "Hierarchical clustering of pit crater chains on Venus". Canadian Journal of Earth Sciences. 50 (1): 109–126. Bibcode:2013CaJES..50..109D. doi:10.1139/cjes-2012-0054.
  4. Wyrick; et al. "Pit Crater Chains Across the Solar System" (PDF).
  5. "Planetary Analog Sites: 3. Pit Craters" (PDF). University of Hawaii. 5 March 2015. Retrieved 23 February 2019.
  6. 1 2 3 "Distribution, morphology, and origins of Martian pit crater chains". www.agu.org. Retrieved 2008-04-12.
  7. 1 2 Okubo, Chris, and Stephen Martel. "Pit crater formation on Kilauea volcano, Hawaii." Journal of Volcanology and Geothermal Research. 86.1-4 (1998):1-18. Print.
  8. 1 2 Geological Field Guide: Kilauea Volcano. revised edition. Claremont, CA: Hawai'i Natural History Association, 2002. 97. Print
  9. The Diagram Group, David Lambert & (1998). The Field Guide to Geology (Updated Ed.). MY: Facts on File, Inc. pp. 44–45, 94–95. ISBN   0-8160-3840-6.
  10. 1 2 Donald W. Hyndman, Richard W. Hazlett & (2005). Roadside Geology Of Hawai'i. Missoula, MN: Mountain Press Publishing. pp. 22–23, 68–70, 72–73, 75, 80–82. ISBN   0-87842-344-3.
  11. Wilkes, C., 1845. Narrative of the United States Exploring Expedition during the years 1838, 1839, 1840, 1841, and 1842, Vol. 4. Lea and Blanchard, Philadelphia, 180 pp
  12. USGS. Devil's Throat has evolved into a shadow of its former self, web. 7 Oct 2010