Chromite | |
---|---|
![]() Octahedral chromite crystal from the Freetown Layered Complex in Sierra Leone, Africa (size: 1.3 x 1.2 x 1.2 cm) | |
General | |
Category | Oxide minerals Spinel group Spinel structural group |
Formula (repeating unit) | (Fe, Mg)Cr2O4 |
IMA symbol | Chr [1] |
Strunz classification | 4.BB.05 |
Crystal system | Isometric |
Crystal class | Hexoctahedral (m3m) H-M symbol: (4/m 3 2/m) |
Space group | Fd3m (no. 227) |
Unit cell | a = 8.344 Å; Z = 8 |
Identification | |
Color | Black to brownish black; brown to brownish black on thin edges in transmitted light |
Crystal habit | Octahedral rare; massive to granular |
Twinning | Spinel law on {Ill} |
Cleavage | None, parting may develop along {III} |
Fracture | Uneven |
Tenacity | Brittle |
Mohs scale hardness | 5.5 |
Luster | Resinous, Greasy, Metallic, Sub-Metallic, Dull |
Streak | Brown |
Diaphaneity | Translucent to opaque |
Specific gravity | 4.5–4.8 |
Optical properties | Isotropic |
Refractive index | n = 2.08–2.16 |
Other characteristics | Weakly magnetic |
References | [2] [3] [4] [5] |
Chromite is a crystalline mineral composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of Fe Cr 2 O 4. It is an oxide mineral belonging to the spinel group. The element magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite (Mg Cr 2 O 4). [6] Substitution of the element aluminium can also occur, leading to hercynite (Fe Al 2 O 4). [7] Chromite today is mined particularly to make stainless steel through the production of ferrochrome (Fe Cr), which is an iron-chromium alloy. [8]
Chromite grains are commonly found in large mafic igneous intrusions such as the Bushveld in South Africa and India. Chromite is iron-black in color with a metallic luster, a dark brown streak and a hardness on the Mohs scale of 5.5. [9]
Chromite minerals are mainly found in mafic-ultramafic igneous intrusions and are also sometimes found in metamorphic rocks. The chromite minerals occur in layered formations that can be hundreds of kilometres long and a few meters thick. [10] Chromite is also common in iron meteorites and form in association with silicates and troilite minerals. [11]
The chemical composition of chromite can be represented as FeCr2O4, with the iron in the +2 oxidation state and the chromium in the +3 oxidation state. [5] bauxite, when presented as an ore, or in massive form, forms as fine granular aggregates. The structure of the ore can be seen as platy, with breakages along planes of weakness. Chromite can also be presented in a thin section. The grains seen in thin sections are disseminated with crystals that are euhedral to subhedral. [12]
Chromite contains Mg, ferrous iron [Fe(II)], Al and trace amounts of Ti. [5] Chromite can change into different minerals based on the amounts of each element in the mineral. Chromite is a part of the spinel group, which means that it is able to form a complete solid solution series with other members in the same group. These include minerals such as chenmingite (FeCr2O4), xieite (FeCr2O4), magnesiochromite (MgCr2O4) and magnetite (Fe2+Fe3+2O4). Chenmingite and xieite are polymorphs of chromite while magnesiochromite and magnetite are isostructural with chromite. [5]
Chromite occurs as massive and granular crystals and very rarely as octahedral crystals. Twinning for this mineral occurs on the {III} plane as described by the spinel law. [5]
Grains of minerals are generally small in size. However, chromite grains up to 3 cm have been found. These grains are seen to crystallize from the liquid of a meteorite body where there are low amounts of chromium and oxygen. The large grains are associated with stable supersaturated conditions seen from the meteorite body. [11]
Chromite is an important mineral in helping to determine the conditions that rocks form. It can have reactions with various gases such as CO and CO2. The reaction between these gases and the solid chromite grains results in the reduction of the chromite and allows for the formation of iron and chromium alloys. There could also be a formation of metal carbides from the interaction with chromite and the gases. [13]
Chromite is seen to form early in the crystallization process. This allows for chromite to be resistant to the alteration effects of high temperatures and pressures seen in the metamorphic series. It is able to progress through the metamorphic series unaltered. Other minerals with a lower resistance are seen to alter in this series to minerals such as serpentine, biotite and garnet. [14]
Chromite is found as orthocumulate lenses in peridotite from the Earth's mantle. It also occurs in layered, ultramafic intrusive rocks. [15] In addition, it is found in metamorphic rocks such as some serpentinites. Ore deposits of chromite form as early magmatic differentiates. It is commonly associated with olivine, magnetite, serpentine and corundum. [16] The vast Bushveld Igneous Complex of South Africa is a large layered mafic to ultramafic igneous body with some layers consisting of 90% chromite, forming the rare rock type chromitite (cf. chromite the mineral and chromitite, a rock containing chromite). [17] The Stillwater Igneous Complex in Montana also contains significant chromite. [3]
Chromite suitable for commercial mining is found in just a handful of very substantial deposits. There are 2 main types of chromite deposits: stratiform deposits and podiform deposits. Stratiform deposits in layered intrusions are the main source of chromite resources and are found in South Africa, Canada, Finland, and Madagascar. Chromite resources from podiform deposits are mainly found in Kazakhstan, Turkey, and Albania. Zimbabwe is the only country that contains notable chromite reserves in both stratiform and podiform deposits. [18]
Stratiform deposits are formed as large sheet-like bodies, usually formed in layered mafic to ultramafic igneous complexes. This type of deposit is used to obtain 98% of the worldwide chromite reserves. [19]
Stratiform deposits are typically seen to be of Precambrian in age and are found in cratons. The mafic to ultramafic igneous provinces that these deposits are formed in were likely intruded into continental crust, which may have contained granites or gneisses. The shapes of these intrusions are described as tabular or funnel-shaped. The tabular intrusions were placed in the form of sills with the layering of these intrusions being parallel. Examples of these tabular intrusions can be seen in the Stillwater Igneous Complex and Bird River. The funnel-shaped intrusions are seen to be dipping towards the center of the intrusion. This gives the layers in this intrusion a syncline formation. Examples of this type of intrusion can be seen in the Bushveld Igneous Complex and the Great Dyke. [19]
Chromite can be seen in stratiform deposits as multiple layers which consist of chromitite. Thicknesses for these layers range between 1 cm and 1 m. Lateral depths can reach lengths of 70 km. Chromitite is the main rock in these layers, with 50–95% of it being made of chromite and the rest being composed of olivine, orthopyroxene, plagioclase, clinopyroxene, and the various alteration products of these minerals. An indication of water in the magma is determined by the presence of brown mica. [19]
Podiform deposits are seen to occur within the ophiolite sequences. The stratigraphy of the ophiolite sequence is deep-ocean sediments, pillow lavas, sheeted dykes, gabbros and ultramafic tectonites. [19]
These deposits are found in ultramafic rocks, most notably in tectonites. It can be seen that the abundance of podiform deposits increase towards the top of the tectonites. [19]
Podiform deposits are irregular in shape. "Pod" is a term given by geologists to express the uncertain morphology of this deposit. This deposit shows foliation that is parallel to the foliation of the host rock. Podiform deposits are described as discordant, subconcordant and concordant. Chromite in podiform deposits form as anhedral grains. The ores seen in this type of deposit have nodular texture and are loosely-packed nodules with a size range of 5–20 mm. Other minerals that are seen in podiform deposits are olivine, orthopyroxene, clinopyroxene, pargasite, Na-mica, albite, and jadeite. [19]
Chromium extracted from chromite is used on a large scale in many industries, including metallurgy, electroplating, paints, tanning, and paper production. Environmental contamination with hexavalent chromium is a major health and environmental concern. Chromium is most stable in its trivalent (Cr(III)) form, seen in stable compounds such as natural ores. Cr(III) is an essential nutrient, required for lipid and glucose metabolism in animals and humans. In contrast, the second most stable form, hexavalent chromium (Cr(VI)), is generally produced through human activity and rarely seen in nature (as in crocoite), and is a highly toxic carcinogen that may kill animals and humans if ingested in large doses. [20]
Health effects
When chromite ore is mined, it is aimed for the production of ferrochrome and produces a chromite concentrate of a high chromium to iron ratio. [21] It can also be crushed and processed. Chromite concentrate, when combined with a reductant such as coal or coke and a high temperature furnace can produce ferrochrome. Ferrochrome is a type of ferroalloy that is an alloy in between chromium and iron. This ferroalloy, as well as chromite concentrate can introduce various health effects. Introducing a definitive control approach and distinct mitigation techniques can provide importance related to the safety of human health. [22]
When chromite ore is exposed to surface conditions, weathering and oxidation can occur. The element chromium is most abundant in chromite in the form of trivalent (Cr-III). When chromite ore is exposed to aboveground conditions, Cr-III can be converted to Cr-VI, which is the hexavalent state of chromium. Cr-VI is produced from Cr-III by means of dry milling or grinding of the ore. This is due to the moistness of the milling process as well as the atmosphere in which the milling is taking place. A wet environment and a non-oxygenated atmosphere are ideal conditions to produce less Cr-VI, while the opposite is known to create more Cr-VI. [23]
Production of ferrochrome is observed to emit pollutants into the air such as nitrogen oxides, carbon oxides and sulfur oxides, as well as dust particulates with a high concentration of heavy metals such as chromium, zinc, lead, nickel and cadmium. During high temperature smelting of chromite ore to produce Ferrochrome, Cr-III is converted to Cr-VI. As with chromite ore, Ferrochrome is milled and therefore produces Cr-VI. Cr-VI is therefore introduced into the dust when the Ferrochrome is produced. This introduces health risks such as inhalation potential and leaching of toxins into the environment. Human exposure to chromium is ingestion, skin contact, and inhalation. Chromium-III and VI will accumulate in the tissues of humans and animals. The excretion of this type of chromium from the body tends to be very slow which means that elevated concentrations of chromium can be seen decades later in human tissues. [23]
Environmental effects
Chromite mining, chromium, and ferrochrome production can toxically effect the environment. [23] Chromite mining is necessary when it comes to the production of economic commodities. [24]
As a result of leaching of soils and the explicit discharge from industrial activities, weathering of rocks that contain chromium will enter the water column. The route of chromium uptake in plants is still ambiguous, but because it is a nonessential element, chromium will not have a distinct mechanism for that uptake which is independent from chromium speciation. [25] Plant studies have shown that toxic effects on plants from chromium include things such as wilting, narrow leaves, delayed or reduced growth, a decrease in chlorophyll production, damage to root membranes, small root systems, death and many more. [23] Chromium's structure is similar to other essential elements which means that it can impact the mineral nutrition of plants. [25]
During industrial activities and production things such as sediment, water, soil, and air all become polluted and contaminated with chromium. Hexavalent chromium has negative impacts towards soil ecology because it decreases soil micro-organism presence, function, and diversity. [23] Chromium concentrations in soil diversify depending on the different compositions of the sediments and rocks that the soil is made from. The chromium present in soil is a mixture of both Cr(VI) and Cr(III). [25] Certain types of chromium such as Chromium-VI has the capability to pass into the cells of organisms. Dust particles from industry operations and industrial wastewater contaminate and pollute surface water, groundwater, and soils. [23]
In aquatic environments, chromium could experience things such as dissolution, sorption, precipitation, oxidation, reduction, and desorption. [25] In aquatic ecosystems chromium bioaccumulates in invertebrates, aquatic plants, fish, and algae. These toxic effects will operate differently because things such as sex, size, and the development stage of an organism may vary. Things such as the temperature of the water, its alkalinity, salinity, pH, and other contaminants will also impact these toxic effects on organisms. [23]
Chromite can be used as a refractory material because it has a high heat stability. [26] The chromium extracted from chromite is used in chrome plating and alloying for production of corrosion resistant superalloys, nichrome, and stainless steel. Chromium is used as a pigment for glass, glazes, and paint, and as an oxidizing agent for tanning leather. [27] It is also sometimes used as a gemstone. [28]
Usually known as chrome, it is a very essential industrial metal. It is hard and resistant to corrosion. This is used for things such as nonferrous alloys, the production of stainless steel, chemicals that process leather, and the creation of pigments. Stainless steel usually contains about 18 percent of chromium. The chromium in the stainless steel is the material which hardens making it resilient to corrosion. [29]
Most shiny car trim is chromium plated. Superalloys that contain chromium allow jet engines to run under high stress, in a chemically oxidizing environment, and in high-temperature situations. [29]
Porcelain tiles are often produced with many different colours and pigmentations. The usual contributor to colour in fast-fired porcelain tiles is black (Fe,Cr)
2O
3 pigment, which is fairly expensive and is synthetic. Natural chromite allows for an inexpensive and inorganic pigmentation alternative to the expensive (Fe,Cr)
2O
3 and allows for the microstructure and mechanical properties of the tiles to not be substantially altered or modified when introduced. [30]
Chromium is a chemical element; it has symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
Ore is natural rock or sediment that contains one or more valuable minerals, typically including metals, concentrated above background levels, and that is economically viable to mine and process. The grade of ore refers to the concentration of the desired material it contains. The value of the metals or minerals a rock contains must be weighed against the cost of extraction to determine whether it is of sufficiently high grade to be worth mining and is therefore considered an ore. A complex ore is one containing more than one valuable mineral.
Spinel is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula MgAl
2O
4 in the cubic crystal system. Its name comes from the Latin word spinella, a diminutive form of spine, in reference to its pointed crystals.
Ilmenite is a titanium-iron oxide mineral with the idealized formula FeTiO
3. It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printing inks, fabrics, plastics, paper, sunscreen, food and cosmetics.
Dunite, also known as olivinite, is an intrusive igneous rock of ultramafic composition and with phaneritic (coarse-grained) texture. The mineral assemblage is greater than 90% olivine, with minor amounts of other minerals such as pyroxene, chromite, magnetite, and pyrope. Dunite is the olivine-rich endmember of the peridotite group of mantle-derived rocks.
Skarns or tactites are coarse-grained metamorphic rocks that form by replacement of carbonate-bearing rocks during regional or contact metamorphism and metasomatism. Skarns may form by metamorphic recrystallization of impure carbonate protoliths, bimetasomatic reaction of different lithologies, and infiltration metasomatism by magmatic-hydrothermal fluids. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that commonly intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from a variety of sources; magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on both the original composition of the hydrothermal fluid and the original composition of the protolith.
Chromate salts contain the chromate anion, CrO2−
4. Dichromate salts contain the dichromate anion, Cr
2O2−
7. They are oxyanions of chromium in the +6 oxidation state and are moderately strong oxidizing agents. In an aqueous solution, chromate and dichromate ions can be interconvertible.
Peridotite ( PERR-ih-doh-tyte, pə-RID-ə-) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.
Uvarovite is a chromium-bearing garnet group species with the formula: Ca3Cr2(SiO4)3. It was discovered in 1832 by Germain Henri Hess who named it after Count Sergei Uvarov (1765–1855), a Russian statesman and amateur mineral collector. It is classified in the ugrandite group alongside the other calcium-bearing garnets andradite and grossular.
Ultramafic rocks are igneous and meta-igneous rocks with a very low silica content, generally >18% MgO, high FeO, low potassium, and are usually composed of greater than 90% mafic minerals. The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.
Ferrochrome or ferrochromium (FeCr) is a type of ferroalloy, that is, an alloy of chromium and iron, generally containing 50 to 70% chromium by weight.
The Bushveld Igneous Complex (BIC) is the largest layered igneous intrusion within the Earth's crust. It has been tilted and eroded forming the outcrops around what appears to be the edge of a great geological basin: the Transvaal Basin. It is approximately two billion years old and is divided into four limbs or lobes: northern, eastern, southern and western. It comprises the Rustenburg Layered suite, the Lebowa Granites and the Rooiberg Felsics, that are overlain by the Karoo sediments. The site was first publicised around 1897 by Gustaaf Molengraaff who found the native South African tribes residing in and around the area.
The Great Dyke or Dike is a linear geological feature that trends nearly north-south through the centre of Zimbabwe passing just to the west of the capital, Harare. It consists of a band of short, narrow ridges and hills spanning for approximately 550 kilometres (340 mi). The hills become taller as the range goes north, and reach up to 460 metres (1,510 ft) above the Mvurwi Range. The range is host to vast ore deposits, including gold, silver, chromium, platinum, nickel and asbestos.
Various theories of ore genesis explain how the various types of mineral deposits form within Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.
A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around 100 km2 (39 sq mi) to over 50,000 km2 (19,000 sq mi) and several hundred metres to over one kilometre (3,300 ft) in thickness. While most layered intrusions are Archean to Proterozoic in age, they may be any age such as the Cenozoic Skaergaard intrusion of east Greenland or the Rum layered intrusion in Scotland. Although most are ultramafic to mafic in composition, the Ilimaussaq intrusive complex of Greenland is an alkalic intrusion.
Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance.
The Kanichee Mine, also less commonly known as the Ajax Mine, is an abandoned base metal and precious metal mine, located in the Temagami region of northeastern Ontario, Canada. It is near the small unincorporated community of Temagami North, accessed by the Kanichee Mine Road from Highway 11. The Kanichee Mine zone has been explored and mined discontinuously from as early as 1910. During the 20th century, it operated and closed down at least three times, with the most recent being from 1973 to 1976. To date, the discontinuous operation of Kanichee Mine has produced 4.2 million pounds of metal.
Chromitite is an igneous cumulate rock composed mostly of the mineral chromite. It is found in layered intrusions such as the Bushveld Igneous Complex in South Africa, the Stillwater igneous complex in Montana and the Ring of Fire discovery in Ontario.
The Stillwater igneous complex is a large layered mafic intrusion (LMI) located in southern Montana in Stillwater, Sweet Grass and Park Counties. The complex is exposed across 30 miles (48 km) of the north flank of the Beartooth Mountain Range. The complex has extensive reserves of chromium ore and has a history of being mined for chromium. More recent mining activity has produced palladium and other platinum group elements.
In chemistry the term chromite has been used in two contexts. Under IUPAC naming conventions, chromate(III) is preferred to chromite.
{{cite book}}
: CS1 maint: location missing publisher (link)