Lateritic nickel ore deposits

Last updated

Lateritic nickel ore deposits are surficial, weathered rinds formed on ultramafic rocks. They account for 73% of the continental world nickel resources and will be in the future the dominant source for the mining of nickel. [1]

Contents

Genesis and types of nickel laterites

Lateritic nickel ores formed by intensive tropical weathering of olivine-rich ultramafic rocks such as dunite, peridotite and komatiite and their serpentinized derivatives, serpentinite which consist largely of the magnesium silicate serpentine and contains approx. 0.3% nickel. This initial nickel content is strongly enriched in the course of lateritization. Two kinds of lateritic nickel ore have to be distinguished: limonite types and silicate types. [2]

Limonite type laterites (or oxide type) are highly enriched in iron due to very strong leaching of magnesium and silica. They consist largely of goethite and contain 1–2% nickel incorporated in goethite. Absence of the limonite zone in the ore deposits is due to erosion.

Strong weathering of ultramafic rocks at the Earth's surface in humid conditions causes nickel resources to form inside nickel laterites. Laterites are formed by the breakdown of minerals which then leach into groundwater, the leftover minerals join to form the new mineral known as laterites. Nickel is turned into usable quality ore grade by being merged into the newly formed stable minerals. [3]

Silicate type (or saprolite type) nickel ore formed beneath the limonite zone. It contains generally 1.5–2.5% nickel and consists largely of Mg-depleted serpentine in which nickel is incorporated. In pockets and fissures of the serpentinite rock green garnierite can be present in minor quantities, but with high nickel contents – mostly 20–40%. It is bound in newly formed phyllosilicate minerals. All the nickel in the silicate zone is leached downwards (absolute nickel concentration) from the overlying goethite zone.

Ore deposits

Typical nickel laterite ore deposits are very large tonnage, low-grade deposits located close to the surface. They are typically in the range of 20 million tonnes and upwards (this being a contained resource of 200,000 tonnes of nickel at 1%) with some examples approaching a billion tonnes of material. Thus, typically, nickel laterite ore deposits contain many billions of dollars of in-situ value of contained metal.[ citation needed ]

Ore deposits of this type are restricted to the weathering mantle developed above ultramafic rocks. [4] As such they tend to be tabular, flat and really large, covering many square kilometres of the Earth's surface. However, at any one time the area of a deposit being worked for the nickel ore is much smaller, usually only a few hectares. The typical nickel laterite mine often operates as either an open cut mine or a strip mine. [ citation needed ]

Extraction

Nickel laterites are a very important type of nickel ore deposit. They are growing to become the most important source of nickel metal for world demand (currently second to sulfide nickel ore deposits).

Nickel laterites are generally mined via open cut mining methods. Nickel is extracted from the ore by a variety of process routes. Hydrometallurgical processes include high-pressure acid leach (HPAL) and heap leach, both of which are generally followed by solvent extraction – electrowinning (SX-EW) for recovery of nickel. Another hydrometallurgical routes is the Caron process, which consists of roasting followed by ammonia leaching and precipitation as nickel carbonate. Additionally, ferronickel is produced by the rotary kiln electric furnace process (RKEF process).

HPAL process

High pressure acid leach processing is employed for two types of nickel laterite ores:

  1. Ores with a limonitic character such as the deposits of the Moa district in Cuba and southeast New Caledonia at Goro where nickel is bound in goethite and asbolan.
  2. Ores of a predominantly nontronitic character, such as many deposits in Western Australia, where nickel is bound within clay or secondary silicate substrates in the ores. The nickel (+/- cobalt) metal is liberated from such minerals only at low pH and high temperatures, generally in excess of 250 °C.

The advantages of HPAL plants are that they are not as selective toward the type of ore minerals, grades and nature of mineralisation. The disadvantage is the energy required to heat the ore material and acid, and the wear and tear hot acid causes upon plant and equipment. Higher energy costs demand higher ore grades.

Heap (atmospheric) leach

Heap leach treatment of nickel laterites is primarily applicable to clay-poor oxide-rich ore types where clay contents are low enough to allow percolation of acid through the heap. Generally, this route of production is much cheaper – up to half the cost of production – due to the lack of need to heat and pressurise the ore and acid.

Ore is ground, agglomerated, and perhaps mixed with clay-poor rock, to prevent compaction of the clay-like materials and so maintain permeability. The ore is stacked on impermeable plastic membranes and acid is percolated over the heap, generally for 3 to 4 months, at which stage 60% to 70% of the nickel-cobalt content is liberated into acid solution, which is then neutralised with limestone and a nickel-cobalt hydroxide intermediate product is generated, generally then sent to a smelter for refining.

The advantage of heap leach treatment of nickeliferous laterite ores is that the plant and mine infrastructure are much cheaper – up to 25% of the cost of a HPAL plant – and less risky from a technological point of view. However, they are somewhat limited in the types of ore which can be treated.

FerroNickel process

A recent development in the extraction of nickel laterite ores is a particular grade of tropical deposits, typified by examples at Acoje in the Philippines, developed on ophiolite sequence ultramafics. This ore is so rich in limonite (generally grading 47% to 59% iron, 0.8 to 1.5% nickel and trace cobalt) that it is essentially similar to low-grade iron ore. As such, certain steel smelters in China have developed a process for blending nickel limonite ore with conventional iron ore to produce stainless steel feed products.

Nitric acid hydrometallurgical tank leach

Another new method of extracting nickel from laterite ores is currently being demonstrated at a pilot scale test plant at the CSIRO facility in Perth Australia. The DNi process uses nitric acid, instead of sulphuric acid, to extract the nickel within a few hours and then the nitric acid is recycled. The DNi process has the major advantage of being able to treat both limonite and saprolite lateritic ores and is estimated to have less than half the capital and operating costs of HPAL or FerroNickel processes.

See also

Related Research Articles

<span class="mw-page-title-main">Limonite</span> Hydrated iron oxide mineral

Limonite is an iron ore consisting of a mixture of hydrated iron(III) oxide-hydroxides in varying composition. The generic formula is frequently written as FeO(OH)·nH2O, although this is not entirely accurate as the ratio of oxide to hydroxide can vary quite widely. Limonite is one of the three principal iron ores, the others being hematite and magnetite, and has been mined for the production of iron since at least 400 BC.

<span class="mw-page-title-main">Pentlandite</span> Iron–nickel sulfide

Pentlandite is an iron–nickel sulfide with the chemical formula (Fe,Ni)9S8. Pentlandite has a narrow variation range in nickel to iron ratios (Ni:Fe), but it is usually described as 1:1. In some cases, this ratio is skewed by the presence of pyrrhotite inclusions. It also contains minor cobalt, usually at low levels as a fraction of weight.

<span class="mw-page-title-main">Serpentine subgroup</span> Group of phyllosilicate minerals

Serpentine subgroup are greenish, brownish, or spotted minerals commonly found in serpentinite. They are used as a source of magnesium and asbestos, and as decorative stone. The name comes from the greenish color and smooth or scaly appearance from the Latin serpentinus, meaning "serpent rock".

<span class="mw-page-title-main">Garnierite</span> Nickel layer silicate

Garnierite is a general name for a green nickel ore which is found in pockets and veins within weathered and serpentinized ultramafic rocks. It forms by lateritic weathering of ultramafic rocks and occurs in many nickel laterite deposits in the world. It is an important nickel ore, having a large weight percent NiO. As garnierite is not a valid mineral name according to the Commission on New Minerals, Nomenclature and Classification (CNMNC), no definite composition or formula has been universally adopted. Some of the proposed compositions are all hydrous Ni-Mg silicates, a general name for the Ni-Mg hydrosilicates which usually occur as an intimate mixture and commonly includes two or more of the following minerals: serpentine, talc, sepiolite, smectite, or chlorite, and Ni-Mg silicates, with or without alumina, that have x-ray diffraction patterns typical of serpentine, talc, sepiolite, chlorite, vermiculite or some mixture of them all.

<span class="mw-page-title-main">Ultramafic rock</span> Type of igneous and meta-igneous rock

Ultramafic rocks are igneous and meta-igneous rocks with a very low silica content, generally >18% MgO, high FeO, low potassium, and are composed of usually greater than 90% mafic minerals. The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.

<span class="mw-page-title-main">Chrysoprase</span> Gemstone variety of chalcedony

Chrysoprase, chrysophrase or chrysoprasus is a gemstone variety of chalcedony that contains small quantities of nickel. Its color is normally apple-green, but varies from turquoise-like cyan to deep green. The darker varieties of chrysoprase are also referred to as prase.

<span class="mw-page-title-main">Heap leaching</span> Industrial mining process used to extract precious metals from ore

Heap leaching is an industrial mining process used to extract precious metals, copper, uranium, and other compounds from ore using a series of chemical reactions that absorb specific minerals and re-separate them after their division from other earth materials. Similar to in situ mining, heap leach mining differs in that it places ore on a liner, then adds the chemicals via drip systems to the ore, whereas in situ mining lacks these liners and pulls pregnant solution up to obtain the minerals. Heap leaching is widely used in modern large-scale mining operations as it produces the desired concentrates at a lower cost compared to conventional processing methods such as flotation, agitation, and vat leaching.

<span class="mw-page-title-main">Ore genesis</span> How the various types of mineral deposits form within the Earths crust

Various theories of ore genesis explain how the various types of mineral deposits form within Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.

Kambalda type komatiitic nickel ore deposits are a class of magmatic iron-nickel-copper-platinum-group element ore deposit in which the physical processes of komatiite volcanology serve to deposit, concentrate and enrich a Fe-Ni-Cu-(PGE) sulfide melt within the lava flow environment of an erupting komatiite volcano.

Violarite (Fe2+Ni23+S4) is a supergene sulfide mineral associated with the weathering and oxidation of primary pentlandite nickel sulfide ore minerals.

Despite being a mineral rich country, Cameroon has only recently begun to investigate mining on an industrial scale. Strong metal and industrial mineral prices since 2003 have encouraged companies to develop mines here. The terrain mainly consists of granite-rich ground with areas of ultramafic rocks that are sources of cobalt and nickel. There are also deposits of bauxite, gold, iron ore, nepheline syenite, and rutile. Alluvial gold is mainly mined by artisanal miners.

<span class="mw-page-title-main">Népouite</span> Nickel ore from the serpentine family (phyllosilicate)

Népouite is a rare nickel silicate mineral which has the apple green color typical of such compounds. It was named by the French mining engineer Edouard Glasser in 1907 after the place where it was first described, the Népoui Mine, Népoui, Poya Commune, North Province, New Caledonia. The ideal formula is Ni3(Si2O5)(OH)4, but most specimens contain some magnesium, and (Ni,Mg)3(Si2O5)(OH)4 is more realistic. There is a similar mineral called lizardite in which all of the nickel is replaced by magnesium, formula Mg3(Si2O5)(OH)4. These two minerals form a series; intermediate compositions are possible, with varying proportions of nickel to magnesium.

<span class="mw-page-title-main">Laterite</span> Product of rock weathering in wet tropical climate rich in iron and aluminium

Laterite is a soil type rich in iron and aluminium and is commonly considered to have formed in hot and wet tropical areas. Nearly all laterites are of rusty-red coloration, because of high iron oxide content. They develop by intensive and prolonged weathering of the underlying parent rock, usually when there are conditions of high temperatures and heavy rainfall with alternate wet and dry periods. The process of formation is called laterization. Tropical weathering is a prolonged process of chemical weathering which produces a wide variety in the thickness, grade, chemistry and ore mineralogy of the resulting soils. The majority of the land area containing laterites is between the tropics of Cancer and Capricorn.

<span class="mw-page-title-main">Saprolite</span> Chemically weathered rock

Saprolite is a chemically weathered rock. Saprolites form in the lower zones of soil profiles and represent deep weathering of the bedrock surface. In most outcrops, its color comes from ferric compounds. Deeply weathered profiles are widespread on the continental landmasses between latitudes 35°N and 35°S.

<span class="mw-page-title-main">Cobalt extraction</span>

Cobalt extraction refers to the techniques used to extract cobalt from its ores and other compound ores. Several methods exist for the separation of cobalt from copper and nickel. They depend on the concentration of cobalt and the exact composition of the ore used.

<span class="mw-page-title-main">Mines and Geosciences Bureau Region 13 (Philippines)</span>

Mines and Geosciences Bureau - Caraga Region also known as the Caraga Administrative Region, is a government agency responsible for the regulation, management, and development of the mineral resources in the region. It is under the Department of Environment and Natural Resources (DENR). Caraga Region is located at northeastern part of Mindanao. It includes the five provinces of Dinagat Province, Surigao del Norte, Surigao del Sur, Agusan del Norte and Agusan del Sur. Caraga Region is now hosting several mining projects producing various mineral commodities particularly but not limited to gold, copper, chrome, nickel, iron and limestone for concrete cement production. This makes the Department of Environment and Natural Resources, Mines and Geosciences Bureau, Regional Office No. 13 with Office located in Surigao City plays important role in the region's economy, job generation, social and environmental enhancement and protection and ensuring government shares through royalties and taxes.

<span class="mw-page-title-main">Nickel mine</span>

A nickel mine is a mine that produces nickel. Some mines produce nickel primarily, while some mines produce nickel as a side-product of some other metal that has a higher concentration in the ore.

The Cerro Matoso mine in northwest of Colombia is one of the largest open-pit ferronickel mines in the world. and the largest mine of South America, containing the largest nickel reserve in Colombia. It is operated by Cerro Matoso S.A., a company that was owned by Hanna Company and the Instituto de Fomento Industrial (IFI), then by Shell, Billiton, and then the Anglo-Australian multinational BHP, since 2015 is owned by South32. There have been allegations that the mine's operations have caused heavy metal pollution affecting especially local indigenous Zenu and Afro-Descendant residents. These allegations have been rejected by Cerro Matoso on the basis of the available scientific and medical evidence. In March 2018 a Review Chamber of the Constitutional Court of Colombia ordered Cerro Matoso to pay damages to local communities. This decision was reversed partially in September 2018 by the Plenary Chamber of the Constitutional Court on the basis that it did not comply with constitutional precedent for payment of damages and noting that there was no evidence of a direct correlation between the mining operations and the alleged damages.

<span class="mw-page-title-main">Millerite</span> Nickel sulfide mineral

Millerite is a nickel sulfide mineral, NiS. It is brassy in colour and has an acicular habit, often forming radiating masses and furry aggregates. It can be distinguished from pentlandite by crystal habit, its duller colour, and general lack of association with pyrite or pyrrhotite.

The Weda Bay Industrial Park is a nickel mining and industrial park complex in Central Halmahera Regency, North Maluku, Indonesia. The Weda Bay Mine is now among the largest nickel mines in the world.

References

  1. Kerfoot, Derek G. E. (2005). "Nickel". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_157. ISBN   978-3527306732.
  2. Schellmann, W. (1983): Geochemical principles of lateritic nickel ore formation. Proceedings of the 2. International Seminar on Lateritisation Processes, Sao Paulo, 119–135
  3. Elias, Mick. "Nickel laterite deposits – geological overview, resources and exploitation". ResearchGate.
  4. Golightly, J.P. (1981): Nickeliferous Laterite Deposits. Economic Geology 75th Anniversary Volume, 710–735