Serpentinite

Last updated

Serpentinite from the Maurienne valley, Savoie, French Alps Serpentinite sur gneiss.jpg
Serpentinite from the Maurienne valley, Savoie, French Alps
Sample of serpentinite from the Golden Gate National Recreation Area, California, United States Serpentinite.JPG
Sample of serpentinite from the Golden Gate National Recreation Area, California, United States
Chromitic serpentinite (7.9 cm (3.1 in) across), Styria Province, Austria. Protolith was a Proterozoic-Early Paleozoic upper mantle dunite peridotite that has been multiply metamorphosed during the Devonian, Permian, and Mesozoic. Chromitic serpentinite Styria Province, Austria.jpg
Chromitic serpentinite (7.9 cm (3.1 in) across), Styria Province, Austria. Protolith was a Proterozoic-Early Paleozoic upper mantle dunite peridotite that has been multiply metamorphosed during the Devonian, Permian, and Mesozoic.
Tightly folded serpentinite from the Tux Alps, Austria. Closeup view about 30 cm x 20 cm (11.8 in x 7.9 in). Folded serpentinite.jpg
Tightly folded serpentinite from the Tux Alps, Austria. Closeup view about 30 cm × 20 cm (11.8 in × 7.9 in).

Serpentinite is a metamorphic rock composed predominantly of one or more serpentine group minerals formed by near to complete serpentinization of mafic to ultramafic rocks. Its name originated from the similarity of the texture of the rock to that of the skin of a snake. [1] Serpentinite has been called serpentine or serpentine rock, particularly in older geological texts and in wider cultural settings. [2] [3] [4] [5] [6]

Contents

Because most of the chemical reactions necessary to synthesize acetyl-CoA, essential to basic biochemical pathways of life, take place during serpentinization, serpentinite thermal vents are a candidate for the environment in which life on Earth originated.

Formation and mineralogy

Serpentinite is formed by near to complete serpentinization of mafic to ultramafic rocks. [7] Serpentinite can be formed wherever ultramafic rock is infiltrated by water poor in carbon dioxide. [8] This occurs at mid-ocean ridges and in the forearc mantle of subduction zones. [9] [10]

The final mineral composition of serpentinite is usually dominated by lizardite, chrysotile (two minerals of the serpentine subgroup), and magnetite ( Fe3O4 ). Brucite ( Mg(OH)2 ) and antigorite are less commonly present. Lizardite, chrysotile, and antigorite all have approximately the formula Mg3(Si2O5)(OH)4 or (Mg2+, Fe2+)3Si2O5(OH)4, but differ in minor components and in form. [9] Accessory minerals, present in small quantities, include awaruite, other native metal minerals, and sulfide minerals. [11]

Ophiolite of the Gros Morne National Park, Newfoundland. Ophiolites characteristically have a serpentinite component. Gros Morne moho.jpg
Ophiolite of the Gros Morne National Park, Newfoundland. Ophiolites characteristically have a serpentinite component.

Hydrogen production

The serpentinization reaction involving the transformation of fayalite (Fe-end member of olivine) by water into magnetite and quartz also produces molecular hydrogen H2 according to the following reaction:

This reaction closely resembles the Schikorr reaction also producing hydrogen gas by oxidation of Fe2+ ions into Fe3+ ions by the protons H+ of water. Two H+ are then reduced into H2.

In the Schikorr reaction, the two H+ reduced into H2 are these from two OH anions, then transformed into two oxide anions (O2−) directly incorporated into the magnetite crystal lattice while the water in excess is liberated as a reaction by-product.

Hydrogen produced by the serpentinization reaction is important because it can fuel microbial activity in the deep subsurface environment.[ citation needed ]

Hydrothermal vents and mud volcanoes

A white carbonate spire in the Lost City hydrothermal field Expl2224 - Flickr - NOAA Photo Library.jpg
A white carbonate spire in the Lost City hydrothermal field

Deep sea hydrothermal vents located on serpentinite close to the axis of mid-ocean ridges generally resemble black smokers located on basalt, but emit complex hydrocarbon molecules. The Rainbow field of the Mid-Atlantic Ridge is an example of such hydrothermal vents. Serpentinization alone cannot provide the heat supply for these vents, which must be driven mostly by magmatism. However, the Lost City Hydrothermal Field, located off the axis of the Mid-Atlantic Ridge, may be driven solely by heat of serpentinization. Its vents are unlike black smokers, emitting relatively cool fluids (40 to 75 °C (104 to 167 °F)) that are highly alkaline, high in magnesium, and low in hydrogen sulfide. The vents build up very large chimneys, up to 60 meters (200 ft) in height, composed of carbonate minerals and brucite. Lush microbial communities are associated with the vents. Though the vents themselves are not composed of serpentinite, they are hosted in serpentinite estimated to have formed at a temperature of about 200 °C (392 °F). [12] Sepiolite deposits on mid-ocean ridges may have formed through serpentinite-driven hydrothermal activity. [13] However, geologists continue to debate whether serpentinization alone can account for the heat flux from the Lost City field. [12]

The forearc of the Marianas subduction zone hosts large serpentinite mud volcanoes, which erupt serpentinite mud that rises through faults from the underlying serpentinized forearc mantle. Study of these mud volcanoes gives insights into subduction processes, and the high pH fluids emitted at the volcanoes support a microbial community. [14] [10] Experimental drilling into the gabbro layer of oceanic crust near mid-ocean ridges has demonstrated the presence of a sparse population of hydrocarbon-degrading bacteria. These may feed on hydrocarbons produced by serpentinization of the underlying ultramafic rock. [15] [16]

Potential 'cradle of life'

Serpentinite thermal vents are a candidate for the environment in which life on Earth originated. [14] Most of the chemical reactions necessary to synthesize acetyl-CoA, essential to basic biochemical pathways of life, take place during serpentinization. [17] The sulfide-metal clusters that activate many enzymes resemble sulfide minerals formed during serpentinization. [18]

Ecology

Serpentinite ecosystem in the south of New Caledonia Landscape, south of New Caledonia.jpg
Serpentinite ecosystem in the south of New Caledonia

Soil cover over serpentinite bedrock tends to be thin or absent. Soil with serpentine is poor in calcium and other major plant nutrients, but rich in elements toxic to plants such as chromium and nickel. [19] Some species of plants, such as Clarkia franciscana and certain species of manzanita, are adapted to living on serpentinite outcrops. However, because serpentinite outcrops are few and isolated, their plant communities are ecological islands and these distinctive species are often highly endangered. [20] On the other hand, plant communities adapted to living on the serpentine outcrops of New Caledonia resist displacement by introduced species that are poorly adapted to this environment. [21]

Serpentine soils are widely distributed on Earth, in part mirroring the distribution of ophiolites and other serpentine bearing rocks. [22] There are outcroppings of serpentine soils in the Balkan Peninsula, Turkey, the island of Cyprus, the Alps, Cuba, and New Caledonia. In North America, serpentine soils also are present in small but widely distributed areas on the eastern slope of the Appalachian Mountains in the eastern United States, and in the Pacific Ranges of Oregon and California.[ citation needed ]

Occurrences

Notable occurrences of serpentinite are found at Thetford Mines, Quebec; Lake Valhalla, New Jersey; Gila County, Arizona; Lizard complex, Lizard Point, Cornwall; and in localities in Greece, Italy, and other parts of Europe. [23] Notable ophiolites containing serpentinite include the Semail Ophiolite of Oman, the Troodos Ophiolite of Cyprus, the Newfoundland ophiolites, and the Main Ophiolite Belt of New Guinea. [24]

Uses

Drinking cups, examples of serpentinite-turning from Zoblitz in the Erzgebirgskreis Zwei trinkbecher, zoeblitz.jpg
Drinking cups, examples of serpentinite-turning from Zöblitz in the Erzgebirgskreis
College Hall at University of Pennsylvania College Hall U Penn.JPG
College Hall at University of Pennsylvania

Decorative stone in architecture and art

Serpentine group minerals have a Mohs hardness of 2.5 to 3.5, so serpentinite is easily carved. [25] Grades of serpentinite higher in calcite, along with the verd antique (breccia form of serpentinite), have historically been used as decorative stones for their marble-like qualities. College Hall at the University of Pennsylvania, for example, is constructed out of serpentine. Popular sources in Europe before contact with the Americas were the mountainous Piedmont region of Italy and Larissa, Greece. [26] Serpentinites are used in many ways in the arts and crafts. For example, the rock has been turned in Zöblitz in Saxony for several hundred years. [27]

By the Inuit

The Inuit and other indigenous people of the Arctic areas and less so of southern areas used the carved bowl shaped serpentinite qulliq or kudlik lamp with wick, to burn oil or fat to heat, make light and cook with. The Inuit made tools and more recently carvings of animals for commerce. [28]

As an ovenstone

A variety of chlorite talc schist associated with Alpine serpentinite is found in Val d'Anniviers, Switzerland and was used for making "ovenstones" (German : Ofenstein), a carved stone base beneath a cast iron stove. [29]

Neutron shield in nuclear reactors

Serpentinite has a significant amount of bound water, hence it contains abundant hydrogen atoms able to slow down neutrons by elastic collision (neutron thermalization process). Because of this, serpentinite can be used as dry filler inside steel jackets in some designs of nuclear reactors. For example, in RBMK series, as at Chernobyl, it was used for top radiation shielding to protect operators from escaping neutrons. [30] Serpentine can also be added as aggregate to special concrete used in nuclear reactor shielding to increase the concrete density (2.6 g/cm3 (0.094 lb/cu in)) and its neutron capture cross section. [31] [32]

CO2 sequestration

Because it readily absorbs carbon dioxide, serpentinite may be of use for sequestering atmospheric carbon dioxide. [33] To speed up the reaction, serpentinite may be reacted with carbon dioxide at elevated temperature in carbonation reactors. Carbon dioxide may also be reacted with alkaline mine waste from serpentine deposits, or carbon dioxide may be injected directly into underground serpentinite formations. [34] Serpentinite may also be used as a source of magnesium in conjunction with electrolytic cells for CO2 scrubbing. [35]

Cultural references

It is the state rock of California, USA and the California Legislature specified that serpentine was "the official State Rock and lithologic emblem." [3] In 2010, a bill was introduced which would have removed serpentine's special status as state rock due to it potentially containing chrysotile asbestos. [36] The bill met with resistance from some California geologists, who noted that the chrysotile present is not hazardous unless it is mobilized in the air as dust. [37] [ needs update ]

See also

Related Research Articles

<span class="mw-page-title-main">Hydrothermal vent</span> Fissure in a planets surface from which heated water emits

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

<span class="mw-page-title-main">Serpentine subgroup</span> Group of phyllosilicate minerals

Serpentine subgroup are greenish, brownish, or spotted minerals commonly found in serpentinite. They are used as a source of magnesium and asbestos, and as decorative stone. The name comes from the greenish color and smooth or scaly appearance from the Latin serpentinus, meaning "serpent rock".

The iron–sulfur world hypothesis is a set of proposals for the origin of life and the early evolution of life advanced in a series of articles between 1988 and 1992 by Günter Wächtershäuser, a Munich patent lawyer with a degree in chemistry, who had been encouraged and supported by philosopher Karl R. Popper to publish his ideas. The hypothesis proposes that early life may have formed on the surface of iron sulfide minerals, hence the name. It was developed by retrodiction from extant biochemistry in conjunction with chemical experiments.

<span class="mw-page-title-main">Magnesite</span> Type of mineral

Magnesite is a mineral with the chemical formula MgCO
3
. Iron, manganese, cobalt, and nickel may occur as admixtures, but only in small amounts.

The abiogenic petroleum origin hypothesis proposes that most of earth's petroleum and natural gas deposits were formed inorganically, commonly known as abiotic oil. Mainstream theories about the formation of hydrocarbons on earth point to an origin from the decomposition of long-dead organisms, though the existence of hydrocarbons on extraterrestrial bodies like Saturn's moon Titan indicates that hydrocarbons are sometimes naturally produced by inorganic means, however, these theories have not been proven. A historical overview of theories of the abiogenic origins of hydrocarbons has been published.

<span class="mw-page-title-main">Peridotite</span> Coarse-grained ultramafic igneous rock type

Peridotite ( PERR-ih-doh-tyte, pə-RID-ə-) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

<span class="mw-page-title-main">Ultramafic rock</span> Type of igneous and meta-igneous rock

Ultramafic rocks are igneous and meta-igneous rocks with a very low silica content, generally >18% MgO, high FeO, low potassium, and are composed of usually greater than 90% mafic minerals. The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.

<span class="mw-page-title-main">Serpentinization</span> Formation of serpentinite by hydration and metamorphic transformation of olivine

Serpentinization is a hydration and metamorphic transformation of ferromagnesian minerals, such as olivine and pyroxene, in mafic and ultramafic rock to produce serpentinite. Minerals formed by serpentinization include the serpentine group minerals, brucite, talc, Ni-Fe alloys, and magnetite. The mineral alteration is particularly important at the sea floor at tectonic plate boundaries.

<span class="mw-page-title-main">Lost City Hydrothermal Field</span> Hydrothermal field in the mid-Atlantic Ocean

The Lost City Hydrothermal Field, often referred to simply as Lost City, is an area of marine alkaline hydrothermal vents located on the Atlantis Massif at the intersection between the Mid-Atlantic Ridge and the Atlantis Transform Fault, in the Atlantic Ocean. It is a long-lived site of active and inactive ultramafic-hosted serpentinization, abiotically producing many simple molecules such as methane and hydrogen which are fundamental to microbial life. As such it has generated scientific interest as a prime location for investigating the origin of life on Earth and other planets similar to it.

<span class="mw-page-title-main">Serpentine soil</span> Soil type

Serpentine soil is an uncommon soil type produced by weathered ultramafic rock such as peridotite and its metamorphic derivatives such as serpentinite. More precisely, serpentine soil contains minerals of the serpentine subgroup, especially antigorite, lizardite, and chrysotile or white asbestos, all of which are commonly found in ultramafic rocks. The term "serpentine" is commonly used to refer to both the soil type and the mineral group which forms its parent materials.

<span class="mw-page-title-main">Hydromagnesite</span> Hydrated hydroxy-carbonate mineral of magnesium

Hydromagnesite is a hydrated magnesium carbonate mineral with the formula Mg5(CO3)4(OH)2·4H2O.

<span class="mw-page-title-main">Hydrogen cycle</span> Hydrogen exchange between the living and non-living world

The hydrogen cycle consists of hydrogen exchanges between biotic (living) and abiotic (non-living) sources and sinks of hydrogen-containing compounds.

Talc carbonates are a suite of rock and mineral compositions found in metamorphosed ultramafic rocks.

Hydrogen-oxidizing bacteria are a group of facultative autotrophs that can use hydrogen as an electron donor. They can be divided into aerobes and anaerobes. The former use hydrogen as an electron donor and oxygen as an acceptor while the latter use sulphate or nitrogen dioxide as electron acceptors. Species of both types have been isolated from a variety of environments, including fresh waters, sediments, soils, activated sludge, hot springs, hydrothermal vents and percolating water.

Marine chemistry, also known as ocean chemistry or chemical oceanography, is the study of chemical content in marine environments as influenced by plate tectonics and seafloor spreading, turbidity, currents, sediments, pH levels, atmospheric constituents, metamorphic activity, and ecology. Marine life has adapted to the chemistries unique to Earth's oceans, and marine ecosystems are sensitive to changes in ocean chemistry.

Enhanced weathering, also termed ocean alkalinity enhancement when proposed for carbon credit systems, is a process that aims to accelerate the natural weathering by spreading finely ground silicate rock, such as basalt, onto surfaces which speeds up chemical reactions between rocks, water, and air. It also removes carbon dioxide from the atmosphere, permanently storing it in solid carbonate minerals or ocean alkalinity. The latter also slows ocean acidification.

<span class="mw-page-title-main">Rainbow Vent Field</span>

The Rainbow hydrothermal vent field is a system of ultramafic-hosted hydrothermal vents located at 36°14'N on the Mid-Atlantic Ridge (MAR). It was discovered in 1994 from temperature readings of ten high-temperature black smokers at a depth of approximately 2.3 kilometres (1.4 mi), where fluids can exceed 365 °C (689 °F). The site is shallower and larger in area than many other vent fields along the Azores section of the MAR with an area of 1.5 square kilometres. Located 370 km (229.91 mi) southeast of Faial Island, it is a popular geochemical sampling and modeling site due to close proximity to the Azores and definitive representation of serpentinization from hydrothermal circulation and synthesis.

<span class="mw-page-title-main">Mariana mud volcanoes</span>

Mud volcanoes in the Mariana fore-arc are a hydrothermal geologic landform that erupt slurries of mud, water, and gas. There are at least 10 mud volcanoes in the Mariana fore-arc that are actively erupting, including the recently studied Conical, Yinazao, Fantagisna, Asut Tesoro, and South Chamorro serpentinite mud volcanoes. These mud volcanoes erupt a unique serpentinite mud composition that is related to the geologic setting in which they have formed. Serpentinite mud is the product of mantle metasomatism due to subduction zone metamorphism and slab dehydration. As a result, the serpentinite mud that erupts from these mud volcanoes often contains pieces of mantle peridotite material that has not fully altered during the serpentinization process. In addition to pieces of altered mantle material, pieces of subducted seamounts have also been found within the serpentinite muds. Serpentinite mud volcanoes in the Mariana fore-arc are often located above faults in the fore-arc crust. These faults act as conduits for the hydrated mantle material to ascend towards the surface. The Mariana mud volcanoes provide a direct window into the process of mantle hydration that leads to the production of arc magmas and volcanic eruptions.

Antigorite Monoclinic mineral

Antigorite is a lamellated, monoclinic mineral in the phyllosilicate serpentine subgroup with the ideal chemical formula of (Mg,Fe2+)3Si2O5(OH)4. It is the high-pressure polymorph of serpentine and is commonly found in metamorphosed serpentinites. Antigorite, and its serpentine polymorphs, play an important role in subduction zone dynamics due to their relative weakness and high weight percent of water (up to 13 weight % H2O). It is named after its type locality, the Geisspfad serpentinite, Valle Antigorio in the border region of Italy/Switzerland and is commonly used as a gemstone in jewelry and carvings.

Formatotrophs are organisms that can assimilate formate or formic acid to use as a carbon source or for reducing power. Some authors classify formatotrophs as one of the five trophic groups of methanogens, which also include hydrogenotrophs, acetotrophs, methylotrophs, and alcoholotrophs. Formatotrophs have garnered attention for applications in biotechnology as part of a "formate bioeconomy" in which synthesized formate could be used as a nutrient for microoganisms. Formate can be electrochemically synthesized from CO2 and renewable energy, and formatotrophs may be genetically modified to enhance production of biochemical products to be used as biofuels. Technical limitations in culturing formatotrophs have limited the discovery of natural formatotrophs and impeded research on their formate-metabolizing enzymes, which are of interest for applications in carbon sequestration and astrobiology.

References

  1. Schoenherr, Allan A. (11 July 2017). A Natural History of California: Second Edition. Univ of California Press. pp. 35–. ISBN   9780520295117 . Retrieved 6 May 2017.
  2. "serpentine". Merriam-Webster.com Dictionary. Merriam-Webster. Retrieved 6 March 2022.
  3. 1 2 California Government Code § 425.2; see "CA Codes (Gov:420-429.8)". Archived from the original on 28 June 2009. Retrieved 24 December 2009.
  4. Oakeshott, G.B. (1968). "Diapiric Structures in Diablo Range, California". AAPG Special Volume M8:Diapirism and Diapirs. 153: 228–243.
  5. Flett, J.S. (1913). "The geology of the lizard". Proceedings of the Geologists' Association. 24 (3): 118–133. Bibcode:1913PrGA...24..118F. doi:10.1016/S0016-7878(13)80008-9.
  6. González-Mancera, G.; Ortega-Gutiérrez, F.; Nava, N.E.; Arriola, H.S. (2003). "Mössbauer Study of Serpentine Minerals in the Ultramafic Body of Tehuitzingo, Southern Mexico". Hyperfine Interactions. 148 (1–4): 61–71. Bibcode:2003HyInt.148...61G. doi:10.1023/B:HYPE.0000003765.32151.3b. S2CID   96761317.
  7. Haldar, Swapan Kumar (27 July 2020). Introduction to Mineralogy and Petrology. Elsevier Science. ISBN   9780128205853 . Retrieved 20 November 2022.
  8. Moody 1976, p. 136.
  9. 1 2 Roberts, B. A.; Proctor, J. (6 December 2012). The Ecology of Areas with Serpentinized Rocks: A World View. Springer Science & Business Media. p. 8. ISBN   978-94-011-3722-5.
  10. 1 2 Albers, Elmar; Bach, Wolfgang; Pérez-Gussinyé, Marta; McCammon, Catherine; Frederichs, Thomas (2021). "Serpentinization-Driven H2 Production From Continental Break-Up to Mid-Ocean Ridge Spreading: Unexpected High Rates at the West Iberia Margin". Frontiers in Earth Science. 9: 487. Bibcode:2021FrEaS...9..487A. doi: 10.3389/feart.2021.673063 . ISSN   2296-6463.
  11. Moody, Judith B. (April 1976). "Serpentinization: a review". Lithos. 9 (2): 125–138. Bibcode:1976Litho...9..125M. doi:10.1016/0024-4937(76)90030-X.
  12. 1 2 Allen, Douglas E.; Seyfried, W.E. (March 2004). "Serpentinization and heat generation: constraints from Lost City and Rainbow hydrothermal systems 1 1Associate editor: J. C. Alt". Geochimica et Cosmochimica Acta. 68 (6): 1347–1354. doi:10.1016/j.gca.2003.09.003.
  13. Mével, Catherine (September 2003). "Serpentinization of abyssal peridotites at mid-ocean ridges". Comptes Rendus Geoscience. 335 (10–11): 825–852. Bibcode:2003CRGeo.335..825M. doi:10.1016/j.crte.2003.08.006.
  14. 1 2 Fryer, Patricia (15 January 2012). "Serpentinite Mud Volcanism: Observations, Processes, and Implications". Annual Review of Marine Science. 4 (1): 345–373. Bibcode:2012ARMS....4..345F. doi:10.1146/annurev-marine-120710-100922. ISSN   1941-1405. PMID   22457979.
  15. Mason, Olivia U.; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D.; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R.; Giovannoni, Stephen J. (5 November 2010). "First Investigation of the Microbiology of the Deepest Layer of Ocean Crust". PLOS ONE. 5 (11): e15399. Bibcode:2010PLoSO...515399M. doi: 10.1371/journal.pone.0015399 . PMC   2974637 . PMID   21079766.
  16. Marshall, Michael (17 November 2010). "Life is found in deepest layer of Earth's crust". New Scientist. Retrieved 3 December 2021.
  17. Martin, William; Russell, Michael J (29 October 2007). "On the origin of biochemistry at an alkaline hydrothermal vent". Philosophical Transactions of the Royal Society B: Biological Sciences. 362 (1486): 1887–1926. doi:10.1098/rstb.2006.1881. PMC   2442388 . PMID   17255002.
  18. McCollom, T. M.; Seewald, J. S. (1 April 2013). "Serpentinites, Hydrogen, and Life". Elements. 9 (2): 129–134. Bibcode:2013Eleme...9..129M. CiteSeerX   10.1.1.852.2089 . doi:10.2113/gselements.9.2.129 . Retrieved 5 September 2021.
  19. "CVO Website - Serpentine and serpentinite" Archived 19 October 2011 at the Wayback Machine , USGS/NPS Geology in the Parks Website, September 2001, accessed 27 February 2011.
  20. "Serpentinite". Presidio of San Francisco. National Park Service. Retrieved 3 September 2021.
  21. "La flore de Nouvelle-Calédonie – Première partie". Futura-sciences.com. 18 August 2004. Retrieved 30 January 2013.
  22. "6 Serpentine Soil Distributions and Environmental Influences". academic.oup.com. Retrieved 20 November 2022.
  23. Sinkankas, John (1964). Mineralogy for amateurs. Princeton, N.J.: Van Nostrand. pp. 149–480. ISBN   0442276249.
  24. Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. p. 371. ISBN   9780521880060.
  25. Nesse, William D. (2000). Introduction to mineralogy. New York: Oxford University Press. p. 239. ISBN   9780195106916.
  26. Ashurst, John. Dimes, Francis G. Conservation of building and decorative stone. Elsevier Butterworth-Heinemann, 1990, p. 51.
  27. Eva Maria Hoyer: Sächsischer Serpentin: ein Stein und seine Verwendung. Edition Leipzig, Leipzig 1996, pp. 20–22.
  28. Kerr, A.; Squires, G.C. "Serpentinites and associated rock types near Hopedale, Nunatsiavut: Potential for artisanal carving-stone resources" (PDF). Geological Survey Report. 19 (1). Newfoundland and Labrador Department of Natural Resources: 39–57. Retrieved 3 September 2021.
  29. Talcose-schist from Canton Valais. By Thomags Bonney, (Geol. Mag., 1897, N.S., [iv], 4, 110--116) abstract
  30. Lithuanian Energy Institute (28 May 2011). "Design of structures, components, equipments and systems". Ignalina Source Book. Archived from the original on 9 October 2011. Retrieved 28 May 2011.
  31. Aminian, A.; Nematollahi, M.R.; Haddad, K.; Mehdizadeh, S. (3–8 June 2007). Determination of shielding parameters for different types of concretes by Monte Carlo methods (PDF). ICENES 2007: International Conference on Emerging Nuclear Energy Systems. Session 12B: Radiation effects. Istanbul, Turkey. p. 7. Archived from the original (PDF) on 3 March 2016. Retrieved 28 May 2011.
  32. Abulfaraj, Waleed H.; Salah M. Kamal (1994). "Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding". Radiation Physics and Chemistry. 44 (1–2): 139–148. Bibcode:1994RaPC...44..139A. doi:10.1016/0969-806X(94)90120-1. ISSN   0969-806X.
  33. Farhang, F.; Oliver, T.K.; Rayson, M.S.; Brent, G.F.; Molloy, T.S.; Stockenhuber, M.; Kennedy, E.M. (March 2019). "Dissolution of heat activated serpentine for CO2 sequestration: The effect of silica precipitation at different temperature and pH values". Journal of CO2 Utilization. 30: 123–129. doi:10.1016/j.jcou.2019.01.009. S2CID   104424416.
  34. Power, I. M.; Wilson, S. A.; Dipple, G. M. (1 April 2013). "Serpentinite Carbonation for CO2 Sequestration". Elements. 9 (2): 115–121. Bibcode:2013Eleme...9..115P. doi:10.2113/gselements.9.2.115.
  35. Li, Wenzhi; Li, Wen; Li, Baoqing; Bai, Zongqing (February 2009). "Electrolysis and heat pretreatment methods to promote CO2 sequestration by mineral carbonation". Chemical Engineering Research and Design. 87 (2): 210–215. Bibcode:2009CERD...87..210L. doi:10.1016/j.cherd.2008.08.001.
  36. Fimrite, Peter (16 July 2010). "Geologists protest bill to remove state rock". San Francisco Chronicle. Retrieved 17 April 2018.
  37. Frazell, Julie; Elkins, Rachel; O'Geen, Anthony; Reynolds, Robert; Meyers, James. "Facts about Serpentine Rock and Soil Containing Asbestos in California" (PDF). ANR Catalog. University of California Division of Agriculture and Natural Resources. Retrieved 17 April 2018.