Quartz monzonite

Last updated
Quartz monzonite
Igneous rock
Quartz monzonite 36mw1037.jpg
Quartz monzonite bedrock from a USGS drill core at western Cape Cod, Massachusetts
Quarry for the Salt Lake Temple with boulders and detached masses being worked by stone cutters Granite for temple.jpg
Quarry for the Salt Lake Temple with boulders and detached masses being worked by stone cutters

Quartz monzonite is an intrusive, felsic, igneous rock that has an approximately equal proportion of orthoclase and plagioclase feldspars. It is typically a light colored phaneritic (coarse-grained) to porphyritic granitic rock. The plagioclase is typically intermediate to sodic in composition, andesine to oligoclase. Quartz is present in significant amounts. Biotite and/or hornblende constitute the dark minerals. Because of its coloring, it is often confused with granite, but whereas granite contains more than 20% quartz, quartz monzonite is only 5–20% quartz. Rock with less than five percent quartz is classified as monzonite. A rock with more alkali feldspar is a syenite whereas one with more plagioclase is a quartz diorite. [1] The fine grained volcanic rock equivalent of quartz monzonite is quartz latite. [1]

Contents

The term adamellite was originally applied by A. Cathrein in 1890 to orthoclase-bearing tonalite (likely a granodiorite) at Monte Adamello, Italy, in 1890, but later came to refer to quartz monzonite. The term is now deprecated. [2]

Quartz monzonite porphyry is often associated with copper mineralization in the porphyry copper ore deposits. [3]

Geographic distribution

United States

In the White Mountains and western highlands of New Hampshire, the Kinsman Quartz Monzonite is an extensive formation that underlies Kinsman Mountain, parts of Franconia Notch, Mount Cardigan, and Mount Sunapee. [4]

Stone Mountain in Georgia is a large quartz monzonite monadnock.[ citation needed ]

Quartz monzonite extracted from a quarry in Little Cottonwood Canyon was used to build several buildings in Salt Lake City, Utah, including the Church of Jesus Christ of Latter-day Saints' Salt Lake Temple, Church Administration Building, and Conference Center, as well as the Utah State Capitol.[ citation needed ]

The large boulders of Joshua Tree National Park in southern California are quartz monzonite.[ citation needed ]

A large pluton in the Atlanta lobe of the Idaho Batholith, near McCall, Idaho, is made of quartz monzonite. [5]

The Guilford Quartz Monzonite and Woodstock Quartz Monzonite, probably comagmatic, are located in central Maryland.[ citation needed ]

Australia

In Queensland, Castle Hill, Mount Stuart and Mount Louisa around Townsville represent a large quartz monzonite province.[ citation needed ]

Related Research Articles

In geology, felsic is a modifier describing igneous rocks that are relatively rich in elements that form feldspar and quartz. It is contrasted with mafic rocks, which are relatively richer in magnesium and iron. Felsic refers to silicate minerals, magma, and rocks which are enriched in the lighter elements such as silicon, oxygen, aluminium, sodium, and potassium. Felsic magma or lava is higher in viscosity than mafic magma/lava.

<span class="mw-page-title-main">Granite</span> Type of igneous rock

Granite is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

<span class="mw-page-title-main">Tonalite</span> Igneous rock

Tonalite is an igneous, plutonic (intrusive) rock, of felsic composition, with phaneritic (coarse-grained) texture. Feldspar is present as plagioclase (typically oligoclase or andesine) with alkali feldspar making up less than 10% of the total feldspar content. Quartz (SiO2) is present as more than 20% of the total quartz-alkali feldspar-plagioclase-feldspathoid (QAPF) content of the rock. Amphiboles and biotite are common accessory minerals.

<span class="mw-page-title-main">Diorite</span> Igneous rock type

Diorite is an intrusive igneous rock formed by the slow cooling underground of magma that has a moderate content of silica and a relatively low content of alkali metals. It is intermediate in composition between low-silica (mafic) gabbro and high-silica (felsic) granite.

<span class="mw-page-title-main">Aplite</span> Fine-grained intrusive igneous rock type similar to granite

Aplite is an intrusive igneous rock in which the mineral composition is the same as granite, but in which the grains are much finer, under 1 mm across. Quartz and feldspar are the dominant minerals. The term aplite or aplitic is often used as a textural term to describe veins of quartz and feldspar with a fine to medium-grain "sugary" texture. Aplites are usually very fine-grained, white, grey or pinkish, and their constituents are visible only with the help of a magnifying lens. Dykes and veins of aplite are commonly observed traversing granitic bodies; they occur also, though less frequently, in syenites, diorites, quartz diabases, and gabbros.

<span class="mw-page-title-main">Granitoid</span> Category of coarse-grained igneous rocks

A granitoid is a generic term for a diverse category of coarse-grained igneous rocks that consist predominantly of quartz, plagioclase, and alkali feldspar. Granitoids range from plagioclase-rich tonalites to alkali-rich syenites and from quartz-poor monzonites to quartz-rich quartzolites. As only two of the three defining mineral groups need to be present for the rock to be called a granitoid, foid-bearing rocks, which predominantly contain feldspars but no quartz, are also granitoids. The terms granite and granitic rock are often used interchangeably for granitoids; however, granite is just one particular type of granitoid.

<span class="mw-page-title-main">Intrusive rock</span> Magmatic rock formed below the surface

Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form intrusions, such as batholiths, dikes, sills, laccoliths, and volcanic necks.

<span class="mw-page-title-main">Metasomatism</span> Chemical alteration of a rock by hydrothermal and other fluids

Metasomatism is the chemical alteration of a rock by hydrothermal and other fluids. It is traditionally defined as metamorphism which involves a change in the chemical composition, excluding volatile components. It is the replacement of one rock by another of different mineralogical and chemical composition. The minerals which compose the rocks are dissolved and new mineral formations are deposited in their place. Dissolution and deposition occur simultaneously and the rock remains solid.

<span class="mw-page-title-main">Lamprophyre</span> Ultrapotassic igneous rocks

Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.

<span class="mw-page-title-main">Granodiorite</span> Type of coarse grained intrusive igneous rock

Granodiorite is a coarse-grained (phaneritic) intrusive igneous rock similar to granite, but containing more plagioclase feldspar than orthoclase feldspar.

<span class="mw-page-title-main">Quartz latite</span> Rock composed mostly of alkali feldspar and plagioclase

A quartz latite is a volcanic rock or fine grained extrusive rock composed mostly of alkali feldspar and plagioclase with some quartz. It forms from the rapid cooling of magma of intermediate composition but moderately enriched in alkali metal oxides.

<span class="mw-page-title-main">Monzonite</span> Igneous intrusive rock with low quartz and equal plagioclase and alkali feldspar

Monzonite is an igneous intrusive rock, formed by slow cooling of underground magma that has a moderate silica content and is enriched in alkali metal oxides. Monzonite is composed mostly of plagioclase and alkali feldspar.

<span class="mw-page-title-main">Quartz-porphyry</span> Type of volcanic rock containing large porphyritic crystals of quartz

Quartz-porphyry, in layman's terms, is a type of volcanic (igneous) rock containing large porphyritic crystals of quartz. These rocks are classified as hemi-crystalline acid rocks.

<span class="mw-page-title-main">Geology of the Australian Capital Territory</span> Overview of the geology of the Australian Capital Territory

The geology of the Australian Capital Territory includes rocks dating from the Ordovician around 480 million years ago, whilst most rocks are from the Silurian. During the Ordovician period the region—along with most of eastern Australia—was part of the ocean floor. The area contains the Pittman Formation consisting largely of Quartz-rich sandstone, siltstone and shale; the Adaminaby Beds and the Acton Shale.

Syenogranite is a fine to coarse grained intrusive igneous rock of the same general composition as granite. They are characteristically felsic.

<span class="mw-page-title-main">Cathedral Peak Granodiorite</span> Suite of intrusive rock in the Sierra Nevada

The Cathedral Peak Granodiorite (CPG) was named after its type locality, Cathedral Peak in Yosemite National Park, California. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada. It has been assigned radiometric ages between 88 and 87 million years and therefore reached its cooling stage in the Coniacian.

McNulty rhyolite is one of four intrusive, igneous geological formations, the Chalk Mountain nevadite, Lincoln porphyry, McNulty rhyolite and Quail porphyry, described, mapped, and named by S. F. Emmons in 1898 within the Tenmile Mining District of southern Summit County, Colorado. The McNulty rhyolite, which is also known as the McNulty Gulch rhyolite, is described by S. F. Emmons as a fine-grained porphyritic rhyolite that is light gray in color and contains many small white feldspars and locally some small smoky quartz crystals. He mapped it as being exposed as small irregular masses in McNulty Gulch and southward beyond the area of the Tenmile Mining District that was mapped at the time. One exposure above the Railroad Boy tunnel, his location 45 in McNulty Gulch, exhibited small drusy cavities containing little tablets of tridymite. He proposed that this rhyolite was either intruded contemporaneously withy or later than the Chalk Mountain nevadite at the time of eruption. Based on field mapping, the McNulty rhyolite was interpreted to cross-cut and post-date the Lincoln and the Quail porphyries. Later geologic mapping in the Tenmile Mining District eliminated the McNulty rhyolite as a recognized geologic formation.

Phyllic alteration is a hydrothermal alteration zone in a permeable rock that has been affected by circulation of hydrothermal fluids. It is commonly seen in copper porphyry ore deposits in calc-alkaline rocks. Phyllic alteration is characterised by the assemblage of quartz + sericite + pyrite, and occurs at high temperatures and moderately acidic conditions.

<span class="mw-page-title-main">Half Dome Granodiorite</span> Half Dome Granodiorite is granodiorite (see also granite) found in Yosemite National Park

Half Dome Granodiorite is granodiorite found in a region on and near Half Dome, in Yosemite National Park, California, United States. The granodiorite forms part of the Tuolumne Intrusive Suite, one of the four major intrusive suites within the Sierra Nevada.

References

  1. 1 2 Classification of Igneous Rocks Archived September 30, 2011, at the Wayback Machine
  2. Streckeisen, A. (1 March 1976). "To each plutonic rock its proper name". Earth-Science Reviews. 12 (1): 1–33. doi:10.1016/0012-8252(76)90052-0.
  3. Titley, Spencer R. and Carol L. Hicks, Geology of the Porphyry Copper Deposits, University of Arizona Press, 1966, p. 35
  4. Billings, M.P. (1956). "The Geology of New Hampshire: Part II – Bedrock Geology". ngmdb.usgs.gov. New Hampshire State Planning and Development Commission. Retrieved September 17, 2020.
  5. Idaho Batholith