Monzogranite

Last updated

Monzogranite
Igneous rock
Monzogranite col Croix.JPG
Monzogranite (Col des Croix, Haute-Saône, France)
QAPF diagram with the Monzogranite field highlighted Monzogranite QAPF.png
QAPF diagram with the Monzogranite field highlighted

Monzogranite is a plutonic rock that occupies the middle of the QAPF diagram, consisting of between 20-60% quartz, and of the remainder, between 35-65% alkali feldspar and the remainder plagioclase.

Contents

Examples

Wave Rock, an outcrop of monzogranite in Western Australia Wave Rock - Russell.jpg
Wave Rock, an outcrop of monzogranite in Western Australia

Pilgangoora belt, Pilbara craton, Western Australia

Monzogranite is associated with the Pilbara craton, a terrane that collided with Western Australia approximately 3.315 Ga, forming a greenstone belt. These monzogranites are typically highly fractionated, rich in potassium, poor in aluminum, and have trace element compositions consistent with remelting of an older tonalitictrondhjemiticgranodioritic crust.

Carlindi monzogranites in the same greenstone belt are light greyish-pink coloured, with roughly equal parts plagioclase, quartz, and microcline, and small amounts of muscovite and mafic minerals. The texture of these monzogranites is similar to granodiorite. [1]

Quebec's near north

In Quebec's near north, early monzogranites are moderately to strongly fractionated, rich in lanthanum, zirconium, but low in ytterbium and yttrium. In general, these monzogranites are low in rare-earth elements. [2]

Vigo–Regua shear zone, northern Portugal

In northern Portugal, along the Vigo–Régua shear zone, the monzogranites belong to the syn-F3 biotite granitoid group. They include large crystals of potassium feldspar and have enclaves of mafic microgranules. The monzogranites are largely composed of quartz, potassium feldspar, plagioclase, and biotite; with small amounts of zircon, monazite, apatite, ilmenite, and muscovite. [3]

Gabal El-Urf area, eastern Egypt

Granitoids in the Gabal El-Urf area in eastern Egypt consist of a monzogranite pluton, belonging to the Younger Granite province, emplaced in granodioritic rocks. The monzogranites here are depleted in aluminum, magnesium, calcium, and titanium, while being enriched with rubidium, niobium, zirconium, and yttrium. They are similar to other granites that were emplaced by crustal extension, and are chemically consistent with fractional crystallization. The monozogranite is moderately radioactive, with much of the uranium and thorium incorporated into accessory minerals such as zircon, xenotime, and allanite. [4] The source of the monzogranite was likely partial melting in the Neoproterozoic, caused by either an orogeny, or magma from a volcanic arc. [5]

Southern Variscan belt in southern Europe

In the southern Variscan belt, Iberia, the Beiras massif Tamanhos, Maceira and Casal Vasco, of Southern Europe, biotite monzogranites are low in aluminum and sodium, while being high in titanium and calcium. The chemistry of these monzogranites could arise from melting of greywacke or tonalite, or could also result from mixing of basalt magma with crustal melts that are higher in aluminum. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Granite</span> Type of igneous rock

Granite is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

<span class="mw-page-title-main">Syenite</span> Intrusive igneous rock

Syenite is a coarse-grained intrusive igneous rock with a general composition similar to that of granite, but deficient in quartz, which, if present at all, occurs in relatively small concentrations. It is considered a granitoid. Some syenites contain larger proportions of mafic components and smaller amounts of felsic material than most granites; those are classed as being of intermediate composition.

<span class="mw-page-title-main">Lamprophyre</span> Ultrapotassic igneous rocks

Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.

<span class="mw-page-title-main">Monzonite</span> Igneous intrusive rock with low quartz and equal plagioclase and alkali feldspar

Monzonite is an igneous intrusive rock, formed by slow cooling of underground magma that has a moderate silica content and is enriched in alkali metal oxides. Monzonite is composed mostly of plagioclase and alkali feldspar.

<span class="mw-page-title-main">Acasta Gneiss</span> Metamorphic rock unit in Canada

The Acasta Gneiss Complex, also called the Acasta Gneiss, is a body of felsic to ultramafic Archean basement rocks, gneisses, that form the northwestern edge of the Slave Craton in the Northwest Territories, Canada, about 300 km (190 mi) north of Yellowknife, Canada. This geologic complex consists largely of tonalitic and granodioritic gneisses and lesser amounts of mafic and ultramafic gneisses. It underlies and is largely concealed by thin, patchy cover of Quaternary glacial sediments over an area of about 13,000 km2 (5,000 sq mi). The Acasta Gneiss Complex contains fragments of the oldest known crust and record of more than a billion years of magmatism and metamorphism. The Acasta Gneiss Complex is exposed in a set of anticlinoriums within the foreland fold and thrust belt of the Paleoproterozoic Wopmay Orogen.

<span class="mw-page-title-main">Narryer Gneiss Terrane</span> Geological complex of ancient rocks in Western Australia

The Narryer Gneiss Terrane is a geological complex in Western Australia that is composed of a tectonically interleaved and polydeformed mixture of granite, mafic intrusions and metasedimentary rocks in excess of 3.3 billion years old, with the majority of the Narryer Gneiss Terrane in excess of 3.6 billion years old. The rocks have experienced multiple metamorphic events at amphibolite or granulite conditions, resulting in often complete destruction of original igneous or sedimentary (protolith) textures. Importantly, it contains the oldest known samples of the Earth's crust: samples of zircon from the Jack Hills portion of the Narryer Gneiss have been radiometrically dated at 4.4 billion years old, although the majority of zircon crystals are about 3.6-3.8 billion years old.

<span class="mw-page-title-main">Yilgarn Craton</span> Large craton in Western Australia

The Yilgarn Craton is a large craton that constitutes a major part of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have been dated at ~4.27 Ga, with one detrital zircon dated as old as 4.4 Ga.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Barberton Greenstone Belt</span> Ancient granite-greenstone terrane in South Africa

The Barberton Greenstone Belt is situated on the eastern edge of the Kaapvaal Craton in South Africa. It is known for its gold mineralisation and for its komatiites, an unusual type of ultramafic volcanic rock named after the Komati River that flows through the belt. Some of the oldest exposed rocks on Earth are located in the Barberton Greenstone Belt of the Eswatini–Barberton areas and these contain some of the oldest traces of life on Earth, second only to the Isua Greenstone Belt of Western Greenland. The Makhonjwa Mountains make up 40% of the Baberton belt. It is named after the town Barberton, Mpumalanga.

<span class="mw-page-title-main">Churchill Craton</span> Geologic region in Canada

The Churchill Craton is the northwest section of the Canadian Shield and stretches from southern Saskatchewan and Alberta to northern Nunavut. It has a very complex geological history punctuated by at least seven distinct regional tectonometamorphic intervals, including many discrete accretionary magmatic events. The Western Churchill province is the part of the Churchill Craton that is exposed north and west of the Hudson Bay. The Archean Western Churchill province contributes to the complicated and protracted tectonic history of the craton and marks a major change in the behaviour of the Churchill Craton with many remnants of Archean supracrustal and granitoid rocks.

The Thiviers-Payzac Unit is a metasedimentary succession of late Neoproterozoic and Cambrian age outcropping in the southern Limousin in France. The unit geologically forms part of the Variscan basement of the northwestern Massif Central.

<span class="mw-page-title-main">Huangling Anticline</span>

The Huangling Anticline or Complex represents a group of rock units that appear in the middle of the Yangtze Block in South China, distributed across Yixingshan, Zigui, Huangling, and Yichang counties. The group of rock involves nonconformity that sedimentary rocks overlie the metamorphic basement. It is a 73-km long, asymmetrical dome-shaped anticline with axial plane orientating in the north-south direction. It has a steeper west flank and a gentler east flank. Basically, there are three tectonic units from the anticline core to the rim, including Archean to Paleoproterozoic metamorphic basement, Neoproterozoic to Jurassic sedimentary rocks, and Cretaceous fluvial deposit sedimentary cover. The northern part of the core is mainly tonalite-trondhjemite-gneiss (TTG) and Cretaceous sedimentary rock called the Archean Kongling Complex. The middle of the core is mainly the Neoproterozoic granitoid. The southern part of the core is the Neoproterozoic potassium granite. Two basins are situated on the western and eastern flanks of the core, respectively, including the Zigui basin and Dangyang basin. Both basins are synforms while Zigui basin has a larger extent of folding. Yuanan Graben and Jingmen Graben are found within the Dangyang Basin area. The Huangling Anticline is an important area that helps unravel the tectonic history of the South China Craton because it has well-exposed layers of rock units from Archean basement rock to Cretaceous sedimentary rock cover due to the erosion of the anticline.

S-type granites are a category of granites first proposed in 1974. They are recognized by a specific set of mineralogical, geochemical, textural, and isotopic characteristics. S-type granites are over-saturated in aluminium, with an ASI index greater than 1.1 where ASI = Al2O3 / (CaO + Na2O +K2O) in mol percent; petrographic features are representative of the chemical composition of the initial magma as originally put forth by Chappell and White are summarized in their table 1.

<span class="mw-page-title-main">Geology of the Democratic Republic of the Congo</span>

The geology of the Democratic Republic of the Congo is extremely old, on the order of several billion years for many rocks. The country spans the Congo Craton: a stable section of ancient continental crust, deformed and influenced by several different mountain building orogeny events, sedimentation, volcanism and the geologically recent effects of the East African Rift System in the east. The country's complicated tectonic past have yielded large deposits of gold, diamonds, coltan and other valuable minerals.

<span class="mw-page-title-main">Tonalite–trondhjemite–granodiorite</span> Intrusive rocks with typical granitic composition

Tonalite–trondhjemite–granodiorite (TTG) rocks are intrusive rocks with typical granitic composition but containing only a small portion of potassium feldspar. Tonalite, trondhjemite, and granodiorite often occur together in geological records, indicating similar petrogenetic processes. Post Archean TTG rocks are present in arc-related batholiths, as well as in ophiolites, while Archean TTG rocks are major components of Archean cratons.

<span class="mw-page-title-main">Archean felsic volcanic rocks</span> Felsic volcanic rocks formed in the Archean Eon

Archean felsic volcanic rocks are felsic volcanic rocks that were formed in the Archean Eon. The term "felsic" means that the rocks have silica content of 62–78%. Given that the Earth formed at ~4.5 billion year ago, Archean felsic volcanic rocks provide clues on the Earth's first volcanic activities on the Earth's surface started 500 million years after the Earth's formation.

I-type granites are a category of granites originating from igneous sources, first proposed by Chappell and White (1974). They are recognized by a specific set of mineralogical, geochemical, textural, and isotopic characteristics that indicate, for example, magma hybridization in the deep crust. I-type granites are saturated in silica but undersaturated in aluminum; petrographic features are representative of the chemical composition of the initial magma. In contrast S-type granites are derived from partial melting of supracrustal or "sedimentary" source rocks.

<span class="mw-page-title-main">Eastern Block of the North China Craton</span>

The Eastern Block of the North China Craton is one of the Earth's oldest pieces of continent. It is separated from the Western Block by the Trans-North China Orogen. It is situated in northeastern China and North Korea. The Block contains rock exposures older than 2.5 billion years. It serves as an ideal place to study how the crust was formed in the past and the related tectonic settings.

<span class="mw-page-title-main">Dharwar Craton</span> Part of the Indian Shield in south India

The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered as the oldest part of the Indian peninsula.

Appinite is an amphibole-rich plutonic rock of high geochemical variability. Appinites are therefore regarded as a rock series comprising hornblendites, meladiorites, diorites, but also granodiorites and granites. Appinites have formed from magmas very rich in water. They occur in very different geological environments. The ultimate source region of these peculiar rocks is the upper mantle, which was altered metasomatically and geochemically before melting.

References

  1. Green, Michael Godfrey (2001). Early Archaean Crustal Evolution: Evidence from ~3.5 Billion Year Old Greenstone Successions in the Pilgangoora Belt, Pilbara Craton, Australia (PDF) (Thesis). School of Geosciences, Division of Geology and Geophysics, University of Sydney.
  2. Boiley, Miche; Gosselin, Charles (2003). "Rare metal potential in the Near North, Québec". Geoscience Exhibit. Archived from the original on 25 August 2004.
  3. Simoes, Pedro Pimenta (2000). Emplacement, geochronology and petrogenesis of the syntectonic biotite-granitoids associated with the Vigo-Régua shear zone (Hercynian Central Iberian Zone, Northern Portugal) (Thesis). University of Minho and University of Nancy (France).
  4. El Mezayen, AM; Ali, HH; Abu, Bakr MA; Sherif, HMY; El Nahas, HA (2016). "Geology and Radioactivity of the Basement Rocks of Wadi El-Sahu Area, Southwestern Sinai, Egypt". Greener Journal of Geology and Earth Sciences. 4: 001–022. doi:10.15580/GJGES.2016.1.021716041.
  5. Moghazi, Abdel-Kader M (1999). "Magma source and evolution of Late Neoproterozoic granitoids in the Gabal El-Urf area, Eastern Desert, Egypt: geochemical and Sr–Nd isotopic constraints". Geological Magazine. 136 (3): 285–300. Bibcode:1999GeoM..136..285M. doi:10.1017/S0016756899002563.
  6. Aguado, Beatriz Valle; Azevedo, M. Rosário; Nolan, John; Martins, M. Estela (2005). "Origin and emplacement of syn-orogenic Variscan granitoids in Iberia the Beiras massif". Journal of the Virtual Explorer. 19. Archived from the original on 31 March 2018.