Monzonite

Last updated
Monzonite
Igneous rock
Monzonite.jpg
Monzonite specimen from Rock Library (NASA JPL)
Composition
Mostly plagioclase and alkali feldspar

Monzonite is an igneous intrusive rock, formed by slow cooling of underground magma that has a moderate silica content and is enriched in alkali metal oxides. Monzonite is composed mostly of plagioclase and alkali feldspar.

Contents

Syenodiorite is an obsolescent term for monzonite [1] or for monzodiorite. [2] Larvikite is a particular form of monzonite. [3]

Description

QAPF diagram for classification of intrusive igneous rocks, with the monzonite field highlighted QAPF monzonite.png
QAPF diagram for classification of intrusive igneous rocks, with the monzonite field highlighted
Photomicrograph of thin section of monzonite (in cross polarised light) Monzonite nicol incrociati.gif
Photomicrograph of thin section of monzonite (in cross polarised light)
Photomicrograph of thin section of monzonite (in plane polarised light) Monzonite nicol paralleli.jpg
Photomicrograph of thin section of monzonite (in plane polarised light)
The Notch Peak monzonite intrusion in Utah inter-fingers (partly as a dike) with highly metamorphosed Cambrian carbonate host rocks NotchPeakDike.JPG
The Notch Peak monzonite intrusion in Utah inter-fingers (partly as a dike) with highly metamorphosed Cambrian carbonate host rocks

Monzonite is a coarse-grained (phaneritic) igneous rock. Such rocks are classified by their relative percentages of quartz, plagioclase, alkali feldspar, and feldspathoid (the QAPF classification). Monzonite is defined as rock having less than 5% quartz in its QAPF fraction and in which alkali feldspar makes up between 35% and 65% of the total feldspar content. If quartz constitutes greater than 5% of the QAPF fraction, the rock is termed a quartz monzonite, while if feldspathoids are present as up to 10% of the QAPF fraction, the rock is termed a feldspathoid-bearing monzonite. Rock richer in alkali feldspar is classified as syenite, while rock richer in plagioclase is termed a monzodiorite. The volcanic equivalent of monzonite is latite. [2] [4]

The plagioclase in monzonite is sodium-rich, ranging from oligoclase to andesine, and is moderately well shaped (subhedral to euhedral). [5] The alkali feldspar is typically orthoclase. Monzonite may also contain minor amounts of hornblende, biotite and other minerals. [2] [4]

Occurrence

Monzonite is found in association with gabbro and granodiorite in the Khankandi pluton in the Alborz Mountains of Iran. The monzonite likely formed during the collision that closed the Tethys Ocean, from partial melting of upper mantle that had previously been altered by fluids released from a subducting ocean crust slab. [6] [7] Monzonite can also form in extensional crustal settings [3] [8] or by partial melting of lower crust of alkali basalt composition. [9]

Diorite, monzonite, and syenite are found together on the margins of the Paleoproterozoic North China craton. These likely formed during the assembly of Columbia and suggest the North China craton was in the interior of Columbia, between Laurentia and Siberia. [10]

The Bingham mine consists of porphyry copper deposits hosted in altered monzonite. Alteration has converted some of the monzonite to compositions resembling quartz monzonite or granite, by altering plagioclase to potassium feldspar and emplacing hydrothermal quartz. [11]

Fragments of monzonite have been found on the surface of the Moon. These likely formed as a mixture of immiscible granite liquid with cumulates composed of plagioclase and pyroxene, which supports the theory that lunar granites form through silicate liquid immiscibility. This is a process in which high-silica and low-silica components of a magma separate like oil and vinegar. [12]

Etymology

Monzonite was originally named after the Monzoni range in Val di Fassa (Trento Province, Italy) where it is abundant. As rock definitions have been systematized and codified, this association has lost any relevance to the rock's definition. [2]

Related Research Articles

<span class="mw-page-title-main">Granite</span> Type of igneous rock

Granite is a coarse-grained (phaneritic) intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions. These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers.

<span class="mw-page-title-main">Gabbro</span> Coarse-grained mafic intrusive rock

Gabbro is a phaneritic (coarse-grained), mafic intrusive igneous rock formed from the slow cooling of magnesium-rich and iron-rich magma into a holocrystalline mass deep beneath the Earth's surface. Slow-cooling, coarse-grained gabbro is chemically equivalent to rapid-cooling, fine-grained basalt. Much of the Earth's oceanic crust is made of gabbro, formed at mid-ocean ridges. Gabbro is also found as plutons associated with continental volcanism. Due to its variant nature, the term gabbro may be applied loosely to a wide range of intrusive rocks, many of which are merely "gabbroic". By rough analogy, gabbro is to basalt as granite is to rhyolite.

<span class="mw-page-title-main">Syenite</span> Intrusive igneous rock

Syenite is a coarse-grained intrusive igneous rock with a general composition similar to that of granite, but deficient in quartz, which, if present at all, occurs in relatively small concentrations. It is considered a granitoid. Some syenites contain larger proportions of mafic components and smaller amounts of felsic material than most granites; those are classed as being of intermediate composition.

<span class="mw-page-title-main">Trachyte</span> Extrusive igneous rock

Trachyte is an extrusive igneous rock composed mostly of alkali feldspar. It is usually light-colored and aphanitic (fine-grained), with minor amounts of mafic minerals, and is formed by the rapid cooling of lava enriched with silica and alkali metals. It is the volcanic equivalent of syenite.

<span class="mw-page-title-main">Phonolite</span> Uncommon extrusive rock

Phonolite is an uncommon shallow intrusive or extrusive rock, of intermediate chemical composition between felsic and mafic, with texture ranging from aphanitic (fine-grained) to porphyritic (mixed fine- and coarse-grained). Phonolite is a variation of the igneous rock trachyte that contains nepheline or leucite rather than quartz. It has an unusually high (12% or more) Na2O + K2O content, defining its position in the TAS classification of igneous rocks. Its coarse grained (phaneritic) intrusive equivalent is nepheline syenite. Phonolite is typically fine grained and compact. The name phonolite comes from the Ancient Greek meaning "sounding stone" due to the metallic sound it produces if an unfractured plate is hit; hence, the English name clinkstone is given as a synonym.

<span class="mw-page-title-main">Basanite</span> Type of volcanic rock

Basanite is an igneous, volcanic (extrusive) rock with aphanitic to porphyritic texture. It is composed mostly of feldspathoids, pyroxenes, olivine, and plagioclase and forms from magma low in silica and enriched in alkali metal oxides that solidifies rapidly close to the Earth's surface.

<span class="mw-page-title-main">Tonalite</span> Igneous rock

Tonalite is an igneous, plutonic (intrusive) rock, of felsic composition, with phaneritic (coarse-grained) texture. Feldspar is present as plagioclase (typically oligoclase or andesine) with alkali feldspar making up less than 10% of the total feldspar content. Quartz (SiO2) is present as more than 20% of the total quartz-alkali feldspar-plagioclase-feldspathoid (QAPF) content of the rock. Amphiboles and biotite are common accessory minerals.

<span class="mw-page-title-main">Nepheline syenite</span> Holocrystalline plutonic rock

Nepheline syenite is a holocrystalline plutonic rock that consists largely of nepheline and alkali feldspar. The rocks are mostly pale colored, grey or pink, and in general appearance they are not unlike granites, but dark green varieties are also known. Phonolite is the fine-grained extrusive equivalent.

<span class="mw-page-title-main">Diorite</span> Igneous rock type

Diorite is an intrusive igneous rock formed by the slow cooling underground of magma that has a moderate content of silica and a relatively low content of alkali metals. It is intermediate in composition between low-silica (mafic) gabbro and high-silica (felsic) granite.

<span class="mw-page-title-main">Granitoid</span> Category of coarse-grained igneous rocks

A granitoid is a generic term for a diverse category of coarse-grained igneous rocks that consist predominantly of quartz, plagioclase, and alkali feldspar. Granitoids range from plagioclase-rich tonalites to alkali-rich syenites and from quartz-poor monzonites to quartz-rich quartzolites. As only two of the three defining mineral groups need to be present for the rock to be called a granitoid, foid-bearing rocks, which predominantly contain feldspars but no quartz, are also granitoids. The terms granite and granitic rock are often used interchangeably for granitoids; however, granite is just one particular type of granitoid.

<span class="mw-page-title-main">Quartz monzonite</span> Type of igneous rock

Quartz monzonite is an intrusive, felsic, igneous rock that has an approximately equal proportion of orthoclase and plagioclase feldspars. It is typically a light colored phaneritic (coarse-grained) to porphyritic granitic rock. The plagioclase is typically intermediate to sodic in composition, andesine to oligoclase. Quartz is present in significant amounts. Biotite and/or hornblende constitute the dark minerals. Because of its coloring, it is often confused with granite, but whereas granite contains more than 20% quartz, quartz monzonite is only 5–20% quartz. Rock with less than five percent quartz is classified as monzonite. A rock with more alkali feldspar is a syenite whereas one with more plagioclase is a quartz diorite. The fine grained volcanic rock equivalent of quartz monzonite is quartz latite.

<span class="mw-page-title-main">Intrusive rock</span> Magmatic rock formed below the surface

Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form intrusions, such as batholiths, dikes, sills, laccoliths, and volcanic necks.

<span class="mw-page-title-main">Essexite</span> Igneous rock type

Essexite, also called nepheline monzogabbro, is a dark gray or black holocrystalline plutonic igneous rock. Its name is derived from the type locality in Essex County, Massachusetts, in the United States.

<span class="mw-page-title-main">QAPF diagram</span> Classification system for igneous rocks

A QAPF diagram is a doubled-triangle plot diagram used to classify intrusive igneous rocks based on their mineralogy. The acronym QAPF stands for "Quartz, Alkali feldspar, Plagioclase, Feldspathoid (Foid)", which are the four mineral groups used for classification in a QAPF diagram. The percentages (ratios) of the Q, A, P and F groups are normalized, i.e., recalculated so that their sum is 100%.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

<span class="mw-page-title-main">Trachybasalt</span> Volcanic rock

Trachybasalt is a volcanic rock with a composition between trachyte and basalt. It resembles basalt but has a high content of alkali metal oxides. Minerals in trachybasalt include alkali feldspar, calcic plagioclase, olivine, clinopyroxene and likely very small amounts of leucite or analcime.

<span class="mw-page-title-main">Basaltic andesite</span> Volcanic rock that is intermediate in composition between basalt and andesite

Basaltic andesite is a volcanic rock that is intermediate in composition between basalt and andesite. It is composed predominantly of augite and plagioclase. Basaltic andesite can be found in volcanoes around the world, including in Central America and the Andes of South America.

<span class="mw-page-title-main">Alkali feldspar granite</span> Type of igneous rock rich in alkali feldspar

Alkali feldspar granite, some varieties of which are called 'red granite', is a felsic igneous rock and a type of granite rich in the mineral potassium feldspar (K-spar). It is a dense rock with a phaneritic texture. The abundance of K-spar gives the rock a predominant pink to reddish hue; peppered with minor amounts of black minerals.

<span class="mw-page-title-main">Tonalite–trondhjemite–granodiorite</span> Intrusive rocks with typical granitic composition

Tonalite–trondhjemite–granodiorite (TTG) rocks are intrusive rocks with typical granitic composition but containing only a small portion of potassium feldspar. Tonalite, trondhjemite, and granodiorite often occur together in geological records, indicating similar petrogenetic processes. Post Archean TTG rocks are present in arc-related batholiths, as well as in ophiolites, while Archean TTG rocks are major components of Archean cratons.

References

  1. Allaby, Michael, ed. (2013). "Monzonite". A dictionary of geology and earth sciences (Fourth ed.). Oxford: Oxford University Press. ISBN   9780199653065.
  2. 1 2 3 4 Le Maitre, R.W., Igneous Rocks: A Classification and Glossary of Terms Cambridge University Press, 2nd ed, pp. 113 ISBN   0-521-66215-X
  3. 1 2 Andersen, Tom (January 1984). "Crystallization history of a Permian composite monzonite-alkali syenite pluton in the Sande cauldron, Oslo rift, southern Norway". Lithos. 17: 153–170. doi:10.1016/0024-4937(84)90016-1.
  4. 1 2 Klein, Cornelis and Cornelius S. Hurlbut, Jr., Manual of Mineralogy, Wiley, 20th ed, pp. 480-484 ISBN   0-471-80580-7
  5. Blatt, Harvey; Tracy, Robert J. (1996). Petrology : igneous, sedimentary, and metamorphic (2nd ed.). New York: W.H. Freeman. pp. 52–53. ISBN   0716724383.
  6. Aghazadeh, Mehraj; Castro, Antonio; Omran, Nematallah Rashidnejad; Emami, Mohamad Hashem; Moinvaziri, Hossien; Badrzadeh, Zahra (May 2010). "The gabbro (shoshonitic)–monzonite–granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran". Journal of Asian Earth Sciences. 38 (5): 199–219. doi:10.1016/j.jseaes.2010.01.002.
  7. Castro, Antonio; Aghazadeh, Mehraj; Badrzadeh, Zahra; Chichorro, Martim (November 2013). "Late Eocene–Oligocene post-collisional monzonitic intrusions from the Alborz magmatic belt, NW Iran. An example of monzonite magma generation from a metasomatized mantle source". Lithos. 180–181: 109–127. doi:10.1016/j.lithos.2013.08.003.
  8. Köksal, Serhat; Toksoy-Köksal, Fatma; Göncüoğlu, M. Cemal; Möller, Andreas; Gerdes, Axel; Frei, Dirk (April 2013). "Crustal source of the Late Cretaceous Satansarı monzonite stock (central Anatolia – Turkey) and its significance for the Alpine geodynamic evolution". Journal of Geodynamics. 65: 82–93. doi:10.1016/j.jog.2012.06.003.
  9. Smith, I. E. M.; White, A. J. R.; Chappell, B. W.; Eggleton, R. A. (May 1988). "Fractionation in a zoned monzonite pluton: Mount Dromedary, southeastern Australia". Geological Magazine. 125 (3): 273–284. doi:10.1017/S0016756800010219.
  10. Wang, Wei; Liu, Shuwen; Bai, Xiang; Li, Qiugen; Yang, Pengtao; Zhao, Yue; Zhang, Shuanhong; Guo, Rongrong (March 2013). "Geochemistry and zircon U–Pb–Hf isotopes of the late Paleoproterozoic Jianping diorite–monzonite–syenite suite of the North China Craton: Implications for petrogenesis and geodynamic setting". Lithos. 162–163: 175–194. doi:10.1016/j.lithos.2013.01.005.
  11. Lanier, G.; Raab, W. J.; Folsom, R. B.; Cone, S. (1 November 1978). "Alteration of equigranular monzonite, Bingham mining district, Utah". Economic Geology. 73 (7): 1270–1286. doi:10.2113/gsecongeo.73.7.1270.
  12. Rutherford, M.J.; Hess, P.C.; Ryerson, F.J.; Campbell, H.W.; Dick, P.A. (1976). "The chemistry, origin and petrogenetic implications of lunar granite and monzonite". 7th Lunar Science Conference Proceedings, Houston, Texas. Pergamon Press, Inc. 2. A77-34651 15-91): 1723-1740. Bibcode:1976LPSC....7.1723R.