Lherzolite

Last updated
Lherzolite Estonian Museum of Natural History Specimen No 177565 photo (g220 g220-15 1 jpg).jpg
Lherzolite
Lherzolite at Etang de Lers, Ariege, France Lherzolite Lers.jpg
Lherzolite at Etang de Lers, Ariège, France
Garnet lherzolite, a xenolith from a kimberlite pipe, Kimberley, South Africa. Field of view ~1.6 cm across. Purplish red = pyrope garnet. Bright green = chromian diopside. Dark greenish-black = orthopyroxene. Olive-green = olivine. Garnet lherzolite - xenolith from a kimberlite pipe, Kimberley SA.jpg
Garnet lherzolite, a xenolith from a kimberlite pipe, Kimberley, South Africa. Field of view ~1.6 cm across. Purplish red = pyrope garnet. Bright green = chromian diopside. Dark greenish-black = orthopyroxene. Olive-green = olivine.

Lherzolite is a type of ultramafic igneous rock. It is a coarse-grained rock consisting of 40 to 90% olivine along with significant orthopyroxene and lesser amounts of calcic chromium-rich clinopyroxene. Minor minerals include chromium and aluminium spinels and garnets. Plagioclase can occur in lherzolites and other peridotites that crystallize at relatively shallow depths (20 – 30 km). At greater depth plagioclase is unstable and is replaced by spinel. At approximately 90 km depth, pyrope garnet becomes the stable aluminous phase. Garnet lherzolite is a major constituent of the Earth's upper mantle (extending to ~300 km depth). Lherzolite is known from the lower ultramafic part of ophiolite complexes (although harzburgite is more common in this setting), from alpine-type peridotite massifs, from fracture zones adjacent to mid-oceanic ridges, and as xenoliths in kimberlite pipes and alkali basalts. Partial melting of spinel lherzolite is one of the primary sources of basaltic magma.

The name is derived from its type locality, the Lherz Massif (an alpine peridotite complex, also known as orogenic lherzolite complex), at Étang de Lers, near Massat in the French Pyrenees; Étang de Lherz is the archaic spelling of this location.

The Lherz massif also contains harzburgite and dunite, as well as layers of spinel pyroxenite, garnet pyroxenite, and hornblendite. The layers represent partial melts extracted from the host peridotite during decompression in the mantle long before emplacement into the crust.

The Lherz massif is unique because it has been emplaced into Paleozoic carbonates (limestones and dolomites), which form mixed breccias of limestone-lherzolite around the margins of the massif.

The Moon's lower mantle may be composed of lherzolite. [1]

Related Research Articles

<span class="mw-page-title-main">Spinel</span> Mineral or gemstone

Spinel is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula MgAl
2
O
4
in the cubic crystal system. Its name comes from the Latin word spinella, a diminutive form of spine, in reference to its pointed crystals.

<span class="mw-page-title-main">Kimberlite</span> Igneous rock which sometimes contains diamonds

Kimberlite is an igneous rock and a rare variant of peridotite. It is most commonly known to be the main host matrix for diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an 83.5-carat (16.70 g) diamond called the Star of South Africa in 1869 spawned a diamond rush and the digging of the open-pit mine called the Big Hole. Previously, the term kimberlite has been applied to olivine lamproites as Kimberlite II, however this has been in error.

<span class="mw-page-title-main">Dunite</span> Ultramafic and ultrabasic rock from Earths mantle which is made of the mineral olivine

Dunite, also known as olivinite, is an intrusive igneous rock of ultramafic composition and with phaneritic (coarse-grained) texture. The mineral assemblage is greater than 90% olivine, with minor amounts of other minerals such as pyroxene, chromite, magnetite, and pyrope. Dunite is the olivine-rich endmember of the peridotite group of mantle-derived rocks.

<span class="mw-page-title-main">Anorthosite</span> Mafic intrusive igneous rock composed predominantly of plagioclase

Anorthosite is a phaneritic, intrusive igneous rock characterized by its composition: mostly plagioclase feldspar (90–100%), with a minimal mafic component (0–10%). Pyroxene, ilmenite, magnetite, and olivine are the mafic minerals most commonly present.

<span class="mw-page-title-main">Xenolith</span> Rock inside a rock with a different composition

A xenolith is a rock fragment that becomes enveloped in a larger rock during the latter's development and solidification. In geology, the term xenolith is almost exclusively used to describe inclusions in igneous rock entrained during magma ascent, emplacement and eruption. Xenoliths may be engulfed along the margins of a magma chamber, torn loose from the walls of an erupting lava conduit or explosive diatreme or picked up along the base of a flowing body of lava on the Earth's surface. A xenocryst is an individual foreign crystal included within an igneous body. Examples of xenocrysts are quartz crystals in a silica-deficient lava and diamonds within kimberlite diatremes. Xenoliths can be non-uniform within individual locations, even in areas which are spatially limited, e.g. rhyolite-dominated lava of Niijima volcano (Japan) contains two types of gabbroic xenoliths which are of different origin - they were formed in different temperature and pressure conditions.

<span class="mw-page-title-main">Chromite</span> Crystalline mineral

Chromite is a crystalline mineral composed primarily of iron(II) oxide and chromium(III) oxide compounds. It can be represented by the chemical formula of FeCr2O4. It is an oxide mineral belonging to the spinel group. The element magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite (MgCr2O4). A substitution of the element aluminium can also occur, leading to hercynite (FeAl2O4). Chromite today is mined particularly to make stainless steel through the production of ferrochrome (FeCr), which is an iron-chromium alloy.

<span class="mw-page-title-main">Peridotite</span> Coarse-grained ultramafic igneous rock type

Peridotite ( PERR-ih-doh-tyte, pə-RID-ə-) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

<span class="mw-page-title-main">Pyroxenite</span> Igneous rock

Pyroxenite is an ultramafic igneous rock consisting essentially of minerals of the pyroxene group, such as augite, diopside, hypersthene, bronzite or enstatite. Pyroxenites are classified into clinopyroxenites, orthopyroxenites, and the websterites which contain both types of pyroxenes. Closely allied to this group are the hornblendites, consisting essentially of hornblende and other amphiboles.

<span class="mw-page-title-main">Ultramafic rock</span> Type of igneous and meta-igneous rock

Ultramafic rocks are igneous and meta-igneous rocks with a very low silica content, generally >18% MgO, high FeO, low potassium, and are composed of usually greater than 90% mafic minerals. The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.

<span class="mw-page-title-main">Serpentinization</span> Formation of serpentinite by hydration and metamorphic transformation of olivine

Serpentinization is a hydration and metamorphic transformation of ferromagnesian minerals, such as olivine and pyroxene, in mafic and ultramafic rock to produce serpentinite. Minerals formed by serpentinization include the serpentine group minerals, brucite, talc, Ni-Fe alloys, and magnetite. The mineral alteration is particularly important at the sea floor at tectonic plate boundaries.

<span class="mw-page-title-main">Bushveld Igneous Complex</span> Large early layered igneous intrusion

The Bushveld Igneous Complex (BIC) is the largest layered igneous intrusion within the Earth's crust. It has been tilted and eroded forming the outcrops around what appears to be the edge of a great geological basin: the Transvaal Basin. It is approximately 2 billion years old and is divided into four different limbs: the northern, southern, eastern, and western limbs. The Bushveld Complex comprises the Rustenburg Layered suite, the Lebowa Granites and the Rooiberg Felsics, that are overlain by the Karoo sediments. The site was first publicised around 1897 by Gustaaf Molengraaff who found the native South African tribes residing in and around the area.

<span class="mw-page-title-main">Cumulate rock</span> Igneous rocks formed by the accumulation of crystals from a magma either by settling or floating.

Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance.

<span class="mw-page-title-main">Harzburgite</span> Ultramafic mantle rock


Harzburgite, an ultramafic, igneous rock, is a variety of peridotite consisting mostly of the two minerals olivine and low-calcium (Ca) pyroxene (enstatite); it is named for occurrences in the Harz Mountains of Germany. It commonly contains a few percent chromium-rich spinel as an accessory mineral. Garnet-bearing harzburgite is much less common, found most commonly as xenoliths in kimberlite.

<span class="mw-page-title-main">Stillwater igneous complex</span> Large mass of igneous rock in Montana, containing metal ore deposits

The Stillwater igneous complex is a large layered mafic intrusion (LMI) located in southern Montana in Stillwater, Sweet Grass and Park Counties. The complex is exposed across 30 miles (48 km) of the north flank of the Beartooth Mountain Range. The complex has extensive reserves of chromium ore and has a history of being mined for chromium. More recent mining activity has produced palladium and other platinum group elements.

Pyrolite is a term used to characterize a model composition of the Earth's mantle. This model is based on that a pyrolite source can produce the Mid-Ocean Ridge Basalt by partial melting. It was first proposed by Ted Ringwood (1962) as being 1 part basalt and 4 parts harzburgite, but later was revised to being 1 part tholeiitic basalt and 3 parts dunite. The term is derived from the mineral names PYR-oxene and OL-ivine. However, whether pyrolite is representative of the Earth's mantle remains debated.

The Merlis Serpentinites are an aligned group of small serpentinite outcrops in the northwestern French Massif Central. Their parent rocks were peridotites from the upper mantle.

<span class="mw-page-title-main">San Quintín Volcanic Field</span> Volcanic field in Baja California, Mexico

The San Quintín Volcanic Field is a collection of ten or eleven volcanic cinder cones situated along the Pacific coast of the Baja California peninsula in Mexico. The field formed by repeated eruptions beginning in the Pleistocene and ending about 3000 years ago. It is one of several known Quaternary period volcanic fields in Baja. The lava shields appear to have first grown as subaqueous volcanoes that emerged as islands.

<span class="mw-page-title-main">Jormua Ophiolite</span> Remnant of ancient oceanic lithosphere near Jormua, Finland

The Jormua Ophiolite is a remnant of ancient oceanic lithosphere near the village of Jormua close to the geographical centre of Finland. The rocks of the Jormua Ophiolite formed about 1,950 million years ago in the Paleoproteozoic Era. The conditions under which the ocean crust rocks of Jormua formed was likely similar to present-day Red Sea. Thus, a linear sea of this type is thought to have existed between two continental landmasses in Finland. At some point this sea closed and the ophiolite was obducted. The Jormua ophiolite is the best preserved one along a larger chain of ophiolites that occur within the Kainuu Schist Belt.

<span class="mw-page-title-main">Farmington Gabbro</span>

Located in the Charlotte Belt of North Carolina is the Farmington Gabbro, located in the Mocksville Complex. The Mocksville Complex consist of metamorphosed/unmetamorphosed gabbros, pyroxenites, hornblendites, wehrlites, granites, and diorites. The plutons in this region formed during the Taconic, Acadian, and Alleghanian orogeny starting on the eastern side of Laurentia. These plutons date back to around 400 Ma, consisting of ultramafic, mafic, and felsic rocks but the Farmington Gabbro is the only pluton on the northwest side of the complex that is unmetamorphosed.

References

  1. Vita-Finzi, Claudio, 2005, Planetary Geology, Harpenden, Terra Publishing, page 31, ISBN   1-903544-20-3