Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are usually composed of greater than 90% mafic minerals (dark colored, high magnesium and iron content). The Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.
Intrusive ultramafic rocks are often found in large, layered ultramafic intrusions where differentiated rock types often occur in layers. [1] Such cumulate rock types do not represent the chemistry of the magma from which they crystallized. The ultramafic intrusives include the dunites, peridotites and pyroxenites. Other rare varieties include troctolite which has a greater percentage of calcic plagioclase. These grade into the anorthosites. Gabbro and norite often occur in the upper portions of the layered ultramafic sequences. Hornblendite and, rarely phlogopite, are also found.
Volcanic ultramafic rocks are rare outside of the Archaean and are essentially restricted to the Neoproterozoic or earlier. Subvolcanic ultramafic rocks and dykes persist longer, but are also rare. There is evidence of ultramafic rocks elsewhere in the solar system.
Examples include komatiite [2] and picritic basalt. Komatiites can be host to ore deposits of nickel. [3]
Ultramafic tuff is extremely rare. It has a characteristic abundance of olivine or serpentine and a scarcity or absence of feldspar and quartz. Rare occurrences may include unusual surface deposits of maars of kimberlites in the diamond fields of southern Africa and other regions.
Technically ultrapotassic rocks and melilitic rocks are considered a separate group, based on melting model criteria, but there are ultrapotassic and highly silica-under-saturated rocks with >18% MgO which can be considered "ultramafic".
Ultrapotassic, ultramafic igneous rocks such as lamprophyre, lamproite and kimberlite are known to have reached the surface of the Earth. Although no modern eruptions have been observed, analogues are preserved.
Most of these rocks occur as dikes, diatremes, lopoliths or laccoliths, and very rarely, intrusions. Most kimberlite and lamproite occurrences occur as volcanic and subvolcanic diatremes and maars; lavas are virtually unknown.
Vents of Proterozoic lamproite (Argyle diamond mine), and Cenozoic lamproite (Gaussberg, Antarctica) are known, as are vents of Devonian lamprophyre (Scotland). Kimberlite pipes in Canada, Russia and South Africa have incompletely preserved tephra and agglomerate facies.
These are generally diatreme events and as such are not lava flows although tephra and ash deposits are partially preserved. These represent low-volume volatile melts and attain their ultramafic chemistry via a different process than typical ultramafic rocks.
Metamorphism of ultramafic rocks in the presence of water and/or carbon dioxide results in two main classes of metamorphic ultramafic rock; talc carbonate and serpentinite.
Talc carbonation reactions occur in ultramafic rocks at lower greenschist through to granulite facies metamorphism when the rock in question is subjected to metamorphism and the metamorphic fluid has more than 10% molar proportion of CO2 (carbon dioxide).
When such metamorphic fluids have less than 10% molar proportion of CO2, reactions favor serpentinisation, resulting in chlorite-serpentine-amphibole type assemblages.
The majority of ultramafic rocks are exposed in orogenic belts, and predominate in Archaean and Proterozoic terranes. Ultramafic magmas in the Phanerozoic are rarer, and there are very few recognised true ultramafic lavas in the Phanerozoic.[ citation needed ]
Many surface exposures of ultramafic rocks occur in ophiolite complexes where deep mantle-derived rocks have been obducted onto continental crust along and above subduction zones.
Serpentine soil is a magnesium rich, calcium, potassium and phosphorus poor soil that develops on the regolith derived from ultramafic rocks. Ultramafic rocks also contain elevated amounts of chromium and nickel which may be toxic to plants. As a result, a distinctive type of vegetation develops on these soils. Examples are the ultramafic woodlands and barrens of the Appalachian mountains and piedmont, the "wet maquis" of the New Caledonia rain forests, and the ultramafic forests of Mount Kinabalu and other peaks in Sabah, Malaysia. Vegetation is typically stunted, and sometimes includes endemic species adapted to the soils.
Often thick, magnesite-calcrete caprock, laterite and duricrust forms over ultramafic rocks in tropical and subtropical environments. Particular floral assemblages associated with highly nickeliferous ultramafic rocks are indicative tools for mineral exploration.
Weathered ultramafic rocks may form lateritic nickel ore deposits. [4] [5]
Ultramafic lava may have been detected on Io, a moon of Jupiter, because heat-mapping of Io's surface found ultra-hot areas with temperatures in excess of 1,200 °C (2,190 °F). The magma immediately below these hot spots is probably about 200 °C (360 °F) hotter, based on surface-to-subsurface temperature differences observed for lava on Earth. A temperature of 1,400 °C (2,550 °F) is thought to indicate the presence of ultramafic magma. [6] [ better source needed ]
Tuff is a type of rock made of volcanic ash ejected from a vent during a volcanic eruption. Following ejection and deposition, the ash is lithified into a solid rock. Rock that contains greater than 75% ash is considered tuff, while rock containing 25% to 75% ash is described as tuffaceous. Tuff composed of sandy volcanic material can be referred to as volcanic sandstone.
Breccia is a rock composed of large angular broken fragments of minerals or rocks cemented together by a fine-grained matrix.
Kimberlite, an igneous rock and a rare variant of peridotite, is most commonly known to be the main host matrix for diamonds. It is named after the town of Kimberley in South Africa, where the discovery of an 83.5-carat diamond called the Star of South Africa in 1869 spawned a diamond rush and led to the excavation of the open-pit mine called the Big Hole. Previously, the term kimberlite has been applied to olivine lamproites as Kimberlite II, however this has been in error.
Volcanic rocks are rocks formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.
Peridotite ( PERR-ih-doh-tyte, pə-RID-ə-) is a dense, coarse-grained igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg2+), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.
Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form intrusions, such as batholiths, dikes, sills, laccoliths, and volcanic necks.
Pyroxenite is an ultramafic igneous rock consisting essentially of minerals of the pyroxene group, such as augite, diopside, hypersthene, bronzite or enstatite. Pyroxenites are classified into clinopyroxenites, orthopyroxenites, and the websterites which contain both types of pyroxenes. Closely allied to this group are the hornblendites, consisting essentially of hornblende and other amphiboles.
Lamprophyres are uncommon, small-volume ultrapotassic igneous rocks primarily occurring as dikes, lopoliths, laccoliths, stocks, and small intrusions. They are alkaline silica-undersaturated mafic or ultramafic rocks with high magnesium oxide, >3% potassium oxide, high sodium oxide, and high nickel and chromium.
Carbonatite is a type of intrusive or extrusive igneous rock defined by mineralogic composition consisting of greater than 50% carbonate minerals. Carbonatites may be confused with marble and may require geochemical verification.
Lamproite is an ultrapotassic mantle-derived volcanic or subvolcanic rock. It has low CaO, Al2O3, Na2O, high K2O/Al2O3, a relatively high MgO content and extreme enrichment in incompatible elements.
Komatiite is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% magnesium oxide (MgO). It is classified as a 'picritic rock'. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite was named for its type locality along the Komati River in South Africa, and frequently displays spinifex texture composed of large dendritic plates of olivine and pyroxene.
Various theories of ore genesis explain how the various types of mineral deposits form within Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.
Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance.
Ultrapotassic igneous rocks are a class of rare, volumetrically minor, generally ultramafic or mafic silica-depleted igneous rocks.
Kambalda type komatiitic nickel ore deposits are a class of magmatic iron-nickel-copper-platinum-group element ore deposit in which the physical processes of komatiite volcanology serve to deposit, concentrate and enrich a Fe-Ni-Cu-(PGE) sulfide melt within the lava flow environment of an erupting komatiite volcano.
The Emily Ann and Maggie Hays nickel deposits are situated 117 km west of the town of Norseman, Western Australia, within the Lake Johnston Greenstone Belt.
In geology, an igneous intrusion is a body of intrusive igneous rock that forms by crystallization of magma slowly cooling below the surface of the Earth. Intrusions have a wide variety of forms and compositions, illustrated by examples like the Palisades Sill of New York and New Jersey; the Henry Mountains of Utah; the Bushveld Igneous Complex of South Africa; Shiprock in New Mexico; the Ardnamurchan intrusion in Scotland; and the Sierra Nevada Batholith of California.
Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.
The Navajo volcanic field is a monogenetic volcanic field located in the Four Corners region of the United States, in the central part of the Colorado Plateau. The volcanic field consists of over 80 volcanoes and associated intrusions of unusual potassium-rich compositions, with an age range of 26.2 to 24.7 million years (Ma).