Obduction

Last updated

Obduction is a geological process whereby denser oceanic crust (and even upper mantle) is scraped off a descending ocean plate at a convergent plate boundary and thrust on top of an adjacent plate. [1] [2] When oceanic and continental plates converge, normally the denser oceanic crust sinks under the continental crust in the process of subduction. [3] Obduction, which is less common, normally occurs in plate collisions at orogenic belts (some of the material from the subducting oceanic plate is emplaced onto the continental plate) [4] or back-arc basins (regions where the edge of a continent is pulled away from the rest of the continent due to the stress of plate collision). [5]

Contents

Obduction of oceanic lithosphere produces a characteristic set of rock types called an ophiolite. This assemblage consists of deep-marine sedimentary rock (chert, limestone, clastic sediments), volcanic rocks (pillow lavas, volcanic glass, volcanic ash, sheeted dykes and gabbros) and peridotite (mantle rock). [6] John McPhee describes ophiolite formation by obduction as "where ocean crust slides into a trench and goes under a continent, [and] a part of the crust—i.e., an ophiolite—is shaved off the top and ends up on the lip of the continent." [7]

Obduction can occur where a fragment of continental crust is caught in a subduction zone with resulting overthrusting of oceanic mafic and ultramafic rocks from the mantle onto the continental crust. Obduction often occurs where a small tectonic plate is caught between two larger plates, with the crust (both island arc and oceanic) welding onto an adjacent continent as a new terrane. When two continental plates collide, obduction of the oceanic crust between them is often a part of the resulting orogeny.[ citation needed ]

Formation types

Upwedging in subduction zones

This process is operative beneath and behind the inner walls of oceanic trenches (subduction zone) where slices of oceanic crust and mantle are ripped from the upper part of the descending plate and wedged and packed in high pressure assemblages against the leading edge of the other plate. [8]

Weakening and cracking of oceanic crust and upper mantle is likely to occur in the tensional regime. This results in the incorporation of ophiolite slabs into the overriding plate. [8] Progressive packing of ophiolite slices and arc fragments against the leading edge of a continent may continue over a long period of time and lead to a form of continental accretion.

Compressional telescoping onto Atlantic-type continental margins

The simplest form of this type of obduction may follow from the development of a subduction zone near the continental margin. Above and behind the subduction zone, a welt of oceanic crust and mantle rides up over the descending plate. The ocean, intervening between the continental margin and the subduction zone is progressively swallowed until the continental margin arrives at the subduction zone and a giant wedge or slice (nappe) of oceanic crust and mantle is pushed across the continental margin.[ citation needed ] Because the buoyancy of the relatively light continental crust is likely to prohibit its extensive subduction, a flip in subduction polarity will occur yielding an ophiolite sheet lying above a descending plate.[ citation needed ]

If however, a large tract of ocean intervenes between the continental margin the subduction zone, a fully developed arc and back-arc basin may eventually arrive and collide with the continental margin. Further convergence may lead to overthrusting of the volcanic arc assemblage and may be followed by flipping the flipping the subduction polarity. According to the rock assemblage as well as the complexly deformed ophiolite basement and arc intrusions, the Coastal Complex of western Newfoundland may well have been formed by this mechanism. [8]

Gravity sliding onto Atlantic-type continental margins

This concept involves the progressive uplift of an actively spreading oceanic ridge, the detachment of slices from the upper part of the lithosphere, and the subsequent gravity sliding of these slices onto the continental margin as ophiolites. This concept was advocated by Reinhardt [9] for the emplacement of the Semail Ophiolite complex in Oman and argued by Church [10] and Church and Stevens [11] for the emplacement of the Bay of Islands sheet in western Newfoundland. This concept has subsequently been replaced by hypotheses that advocate subduction of the continental margin beneath oceanic lithosphere.

Transformation of a spreading ridge to a subduction zone

Many ophiolite complexes were emplaced as thin, hot obducted sheets of oceanic lithosphere shortly after their generation by plate accretion. [12] The change from a spreading plate boundary to a subduction plate boundary may result from rapid rearrangement of relative plate motion. A transform fault may also become a subduction zone, with the side with the higher, hotter, thinner lithosphere riding over the lower, colder lithosphere. This mechanism would lead to obduction of ophiolite complex if it occurred near a continental margin. [8]

Interference of a spreading ridge and a subduction zone

In the situation where a spreading ridge approaches a subduction zone, the ridge collides with the subduction zone, at which time there will develop a complex interaction of subduction-related tectonic sedimentary rock and spreading-related tectonic igneous activity. The left-over ridge may either subduct or ride upward across the trench onto arc trench gap and arc terranes as a hot ophiolite slice. [8]

A potential example is the progressive diminution of the Farallon Plate off California. Ophiolite obduction would not be expected as the two plates share a dextral transform boundary. However, the major collision of the Kula/Pacific plate with the Alaskan/Aleutian resulted in the initiation of subduction of the Pacific Plate beneath Alaska, with no sign of either obduction or indeed any major manifestation of a ridge being “swallowed”. [8]

Rear-arc basin

Dewey and Bird [13] suggest that a common form of ophiolite obduction is related to the closure of rear-arc marginal basins and that, during such closure by subduction, slices of oceanic crust and mantle may be expelled onto adjacent continental forelands and emplaced as ophiolite sheets. In the high heat-flow region of a volcanic arc and rear-arc basin the lithosphere is particularly thin.

This thin lithosphere may preferentially fail along gently dipping thrust surface if a compressional stress is applied to the region. Under these circumstances, a thin sheet of lithosphere may become detached and begin to ride over adjacent lithosphere to finally become emplaced as a thin ophiolite sheet on the adjacent continental foreland. [8] This mechanism is a form of plate convergence where a thin, hot layer of oceanic lithosphere is obducted over cooler and thicker lithosphere.

Continental collision

As an ocean is progressively trapped in between two colliding continental lithospheres, the rising wedges of oceanic crust and mantle rise are caught between the continental plates and detach and begin to move up the advancing continental rise. Continued convergence may lead to the overthrusting of the arc-trench gap and eventually overthrusting of the metamorphic plutonic and volcanic rocks of the volcanic arc.

Following total subduction of an oceanic tract, continuing convergence may lead to a further sequence of intra-continental mechanisms of crustal shortening. This mechanism is thought to be responsible for the various ocean basins of the Mediterranean region. The Alpide belt is believed to register a complex history of plate interactions during the general convergence of the Eurasian and African plates. [8]

Examples

There are few continental plates being obducted under an oceanic plate known today, but in the past it appears to have happened a number of times. Thus there are examples of oceanic crustal rocks and deeper mantle rocks that have been obducted and are now exposed at the surface, worldwide. New Caledonia is one example of recent obduction. The Klamath Mountains of northern California contain several obducted oceanic slabs, most famously the Coast Range Ophiolite. Obducted fragments also are found in the Hajar Mountains of Oman, [9] the Troodos Mountains of Cyprus, Newfoundland, [13] New Zealand, the Alps of Europe, the Shetland islands of Unst and Fetlar, Leka island in Norway, and the Blue Ridge Ophiolite in the Appalachian Mountains of eastern North America.

See also

Related Research Articles

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

<span class="mw-page-title-main">Ophiolite</span> Uplifted and exposed oceanic crust

An ophiolite is a section of Earth's oceanic crust and the underlying upper mantle that has been uplifted and exposed, and often emplaced onto continental crustal rocks.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Island arc</span> Arc-shaped archipelago formed by intense seismic activity of long chains of active volcanoes

Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle along the subduction zone. They are the principal way by which continental growth is achieved.

<span class="mw-page-title-main">Forearc</span> The region between an oceanic trench and the associated volcanic arc

Forearc is a plate tectonic term referring to a region in a subduction zone between an oceanic trench and the associated volcanic arc. Forearc regions are present along convergent margins and eponymously form 'in front of' the volcanic arcs that are characteristic of convergent plate margins. A back-arc region is the companion region behind the volcanic arc.

<span class="mw-page-title-main">Continental collision</span> Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates

In geology, continental collision is a phenomenon of plate tectonics that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is only known to occur on Earth.

<span class="mw-page-title-main">Magmatism</span> Emplacement of magma on the outer layers of a terrestrial planet, which solidifies as igneous rocks

Magmatism is the emplacement of magma within and at the surface of the outer layers of a terrestrial planet, which solidifies as igneous rocks. It does so through magmatic activity or igneous activity, the production, intrusion and extrusion of magma or lava. Volcanism is the surface expression of magmatism.

<span class="mw-page-title-main">Geology of Turkey</span> Overview of the geology of Turkey

The geology of Turkey is the product of a wide variety of tectonic processes that have shaped Anatolia over millions of years, a process which continues today as evidenced by frequent earthquakes and occasional volcanic eruptions.

<span class="mw-page-title-main">Accretionary wedge</span> The sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary

An accretionary wedge or accretionary prism forms from sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary. Most of the material in the accretionary wedge consists of marine sediments scraped off from the downgoing slab of oceanic crust, but in some cases the wedge includes the erosional products of volcanic island arcs formed on the overriding plate.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Bangong suture</span>

The Bangong suture zone is a key location in the central Tibet conjugate fault zone. Approximately 1,200 km long, the suture trends in an east–west orientation. Located in central Tibet between the Lhasa and Qiangtang terranes, it is a discontinuous belt of ophiolites and mélange that is 10–20 km wide, up to 50 km wide in places. The northern part of the fault zone consists of northeast striking sinistral strike-slip faults while the southern part consists of northwest striking right lateral strike-slip faults. These conjugate faults to the north and south of the Bangong intersect with each other along the Bangong-Nujiang suture zone.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

The Troodos Ophiolite on the island of Cyprus represents a Late Cretaceous spreading axis that has since been uplifted due to its positioning on the overriding Anatolian plate at the Cyprus arc and ongoing subduction to the south of the Eratosthenes Seamount.

<span class="mw-page-title-main">High pressure metamorphic terranes along the Bangong-Nujiang Suture Zone</span>

High pressure terranes along the ~1200 km long east-west trending Bangong-Nujiang suture zone (BNS) on the Tibetan Plateau have been extensively mapped and studied. Understanding the geodynamic processes in which these terranes are created is key to understanding the development and subsequent deformation of the BNS and Eurasian deformation as a whole.

<span class="mw-page-title-main">Samail Ophiolite</span>

The Samail Ophiolite, also known as the Semail Ophiolite, is a large, ancient geological formation in Oman and the United Arab Emirates in the Arabian Peninsula. It is one of the world's largest and best-exposed segments of oceanic crust, made of volcanic rocks and ultramafic rocks from the Earth's upper mantle that was overthrust onto the continental crust. This ophiolite provides insight into the dynamics of oceanic crust formation and the tectonic processes involved in the creation of ocean basins.

A continental arc is a type of volcanic arc occurring as an "arc-shape" topographic high region along a continental margin. The continental arc is formed at an active continental margin where two tectonic plates meet, and where one plate has continental crust and the other oceanic crust along the line of plate convergence, and a subduction zone develops. The magmatism and petrogenesis of continental crust are complicated: in essence, continental arcs reflect a mixture of oceanic crust materials, mantle wedge and continental crust materials.

In geology, the term exhumation refers to the process by which a parcel of rock, approaches Earth's surface.

<span class="mw-page-title-main">Geology of New Caledonia</span>

The geology of New Caledonia includes all major rock types, which here range in age from ~290 million years old (Ma) to recent. Their formation is driven by alternate plate collisions and rifting. The mantle-derived Eocene Peridotite Nappe is the most significant and widespread unit. The igneous unit consists of ore-rich ultramafic rocks thrust onto the main island. Mining of valuable metals from this unit has been an economical pillar of New Caledonia for more than a century.

<span class="mw-page-title-main">Chile Ridge</span> Submarine oceanic ridge in the Pacific Ocean

The Chile Ridge, also known as the Chile Rise, is a submarine oceanic ridge formed by the divergent plate boundary between the Nazca Plate and the Antarctic Plate. It extends from the triple junction of the Nazca, Pacific, and Antarctic plates to the Southern coast of Chile. The Chile Ridge is easy to recognize on the map, as the ridge is divided into several segmented fracture zones which are perpendicular to the ridge segments, showing an orthogonal shape toward the spreading direction. The total length of the ridge segments is about 550–600 km.

References

  1. "Obduction".
  2. "Plate Tectonics > Glossary > M - R".
  3. Edwards, Sarah J.; Schellart, Wouter P.; Duarte, Joao C. (2015). "Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust". Tectonics. 34 (7): 1494–1515. Bibcode:2015Tecto..34.1494E. doi: 10.1002/2015TC003884 . S2CID   129467525. Archived from the original on 2021-09-28. Retrieved 2021-09-28.
  4. Dewey, J. F., 1975. The role of ophiolite obduction in the evolution of the Appalachian/Caledonian orogenic belt. In: N. Bogdanov (editor), Ophiolites in the Earth’s Crust. Acad. Sci. U.S.S.R. (in press)
  5. Scliffke, Nicholas; van Hunen, Jeroen; Gueydan, Frédéric; Magni, Valentina; Allen, Mark B. (2021-08-12). "Curved orogenic belts, back-arc basins, and obduction as consequences of collision at irregular continental margins". Geology. 49 (12): 1436–1440. Bibcode:2021Geo....49.1436S. doi: 10.1130/G48919.1 . S2CID   238718200.
  6. Robinson, Paul T.; Malpas, John; Dilek, Yildirim; Zhou, Mei-fu (2008). "The significance of sheeted dike complexes in ophiolites" (PDF). GSA Today. 18 (11): 4–10. Bibcode:2008GSAT...18k...4R. doi: 10.1130/GSATG22A.1 .
  7. McPhee, John (1998). Annals of the Former World. New York: Farmer, Strauss, and Giroux. p. 505.
  8. 1 2 3 4 5 6 7 8 Dewey, J. F., 1976. Ophiolite Obduction. Tectonophysics, v. 31, p.93-120.
  9. 1 2 Reinhardt, B.M., 1969. On the genesis and emplacement of ophiolites in the Oman Mountains geosyncline. Schweiz. Mineral. Petrog. Mitt., 49:1-30
  10. Church, W. R., 1972. Ophiolite: its definition, origin as oceanic crust, and mode of emplacement in orogenic belts, with special reference to the Appalachians. Dep. Energy, Mines Resourc. Can., Publ., 42:71-85.
  11. Church, W.R., and Stevens, R.K., 1971. Early Paleozoic ophiolite complexes of the Newfoundland Appalachians as mantle-oceanic crust sequences. J. Geophys. Res., 76:1460-1466.
  12. Dewey, J. F., 1975. The role of ophiolite obduction in the evolution of the Appalachian/Caledonian orogenic belt. In: N. Bogdanov (editor), Ophiolites in the Earth’s Crust. Acad. Sci. U.S.S.R. (in press)
  13. 1 2 Dewey, J. F. and Bird, J.M., 1971. Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophys. Res., 76:3179-3206.