Fault friction

Last updated

Fault friction describes the relation of friction to fault mechanics. Rock failure and associated earthquakes are very much a fractal operation (see Characteristic earthquake). The process remains scale-invariant down to the smallest crystal. Thus, the behaviour of massive earthquakes is dependent on the properties of single molecular irregularities or asperities. [1]

Contents

Two crystal asperities approaching Faultdyn1.jpg
Two crystal asperities approaching

If two clean nano-asperities are brought together in a vacuum, a cold weld will result. That is, the crystal tips will fuse as if one (cohesion). In nature these tips are actually covered with a thin film of foreign material. By far, the most important component of this film, is water.

Crystal asperities with a thin film Faultdyn2.jpg
Crystal asperities with a thin film

If this water is removed, by extreme drying, the rock minerals do not behave at all as expected: [2] they exhibit no fault healing or dynamic friction. The entire behaviour of earthquakes depends on very thin films.

After a major earthquake, there starts a process known as fault healing. [3] This is a well-demonstrated phenomenon involving a slow increase in the static coefficient of friction. With our nano-model, it is a matter of slowly pushing away the junk for a good cohesive bond. With typical minerals and water, there is another mechanism, whereby the water causes stress corrosion and weakening of the main asperity body (smoothing the irregularities), allowing more plastic deformation, and more contact.

The most important aspect is that this bond-strengthening is time-dependent. For a fault being stressed to the point of an earthquake, these bonds begin to stretch and break. They do not have time to heal again. Once the critical distance has been achieved, there is a significant strength loss, and the fault begins to slide.

Earthquakes only exist because there is a very large loss in frictional strength. It could be that the earthquake "skids" are greased by silica gel, [4] the water acts as a standard bearing lubricant, or that there is a "lift and separate" mechanism at work.

Effect of fluids

All rocks have a certain degree of porosity, with some rock types having a much higher porosity than others. This means that between the individual grains of the rock, there are small pores which can be filled with a gas (usually air) or a fluid. The commonest pore fluid is water, and the presence of water can vary the friction on a fault to a large degree. As water accumulates in the pore space of a body of rock around a fault, the pressure inside the pores builds. On the interface of a presently stable fault, an increase in pore pressure has the effect of essentially pushing the fault apart at a microscopic level. This pore pressure increase can then decrease the surface area of the individual asperities in contact on the fault, causing them to then fracture and the fault to slip. However, the presence of water may not always cause a reduction in friction.

Influence of rock type

The rock type along a fault can have a large effect on the amount of frictional resistance present. Most crystalline rock types will have a much higher coefficient of friction as opposed to sedimentary rocks, due to their higher cohesion and a greater surface area of asperities. The rock type also controls the effect that water will have on fault friction. Laboratory experiments have proved that the presence of water will promote the rupture of a fault in carbonate rocks (marble). [5] However, these experiments also showed that in silica-bearing rock types (microgabbro), the presence of water may delay or even inhibit the rupture of a fault. This is because when a silica-bearing fault ruptures, the rupture occurs through the "flash melting" (instantaneous melting) of the asperities. [5] In other words, the microscopic grain contacts which hold the fault in place instantly melt due to high stresses. The presence of water delays this "flash melting" basically by cooling the contacts, and keeping them in solid form. In fault through a carbonate, the rupture occurs when these asperities experience a brittle failure. In this case, the water acts as a lubricant which promotes the failure of these asperities. The major controlling factor pertaining to the influence of rock type is not necessarily the composition of the rock, but more importantly the "roughness" of the rock at the fault interface. [6]

Fault lubrication (during faulting)

Once a fault begins to slip, the initial frictional heat produced by the fault is extremely intense. This is because two rock faces are sliding against each other at a high rate of speed and with a lot of force. Fault lubrication then is the phenomena whereby the friction on the fault surface decreases as it slips, making it easier for the fault to slip as it does so. One method by which this occurs is through frictional melting. [7] As a fault slips, this immense amount of heat causes a thin layer of rock along the fault to become molten. This molten rock (frictional melt), can then expand and work its way into the pores and imperfections on the fault surface. This has the effect of smoothing the fault surface. You can think of this like the difference between trying to rub two pieces of sand paper past each other, then doing the same with two pieces of printer paper. A similar process can occur if there is water present in the rock. As the fault begins to slip, this rapid increase in temperature close to the fault causes the water in the pore space to vaporize. As the water vapor expands, it causes the pores along the fault surface to dilate and thereby creates a smoother surface at the fault interface. This process can actually create a "near frictionless" surface along the fault. [8]

Pseudotachylytes

Fault ruptures generate massive amounts of heat, which usually result in frictional melting. As a fault slips, this layer of molten rock is smeared and spread across the fault surface, and is forced into any other cracks or interstices that may exist in the surrounding rock. After this molten rock cools, the structure it leaves behind is known as a pseudotachylite. These pseudotachylites can form at pressures at or above roughly 0.7 GPa, which equates to deep crustal faulting. [9] Their presence though, can help to identify the location of ancient faults that have since healed.

Related Research Articles

Earthquake Shaking of the surface of the earth caused by a sudden release of energy in the crust

An earthquake is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in size from those that are so weak that they cannot be felt to those violent enough to propel objects and people into the air, and wreak destruction across entire cities. The seismicity, or seismic activity, of an area is the frequency, type, and size of earthquakes experienced over a period of time. The word tremor is also used for non-earthquake seismic rumbling.

Magma Natural material found beneath the surface of Earth

Magma is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites. Besides molten rock, magma may also contain suspended crystals and gas bubbles.

Metamorphic rock Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock, in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be a sedimentary, igneous, or existing metamorphic rock.

Fault (geology) Fracture or discontinuity in rock across which there has been displacement

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within the Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

Shear zone

A shear zone is a very important structural discontinuity surface in the Earth's crust and upper mantle. It forms as a response to inhomogeneous deformation partitioning strain into planar or curviplanar high-strain zones. Intervening (crustal) blocks stay relatively unaffected by the deformation. Due to the shearing motion of the surrounding more rigid medium, a rotational, non co-axial component can be induced in the shear zone. Because the discontinuity surface usually passes through a wide depth-range, a great variety of different rock types with their characteristic structures are produced.

Coulomb stress transfer is a seismic-related geological process of stress changes to surrounding material caused by local discrete deformation events. Using mapped displacements of the Earth's surface during earthquakes, computed Coulomb stress changes have suggested that stress relieved during an earthquake does not only dissipate, but can also move up and down fault segments, concentrating and promoting subsequent tremors. Importantly, Coulomb stress changes have been applied to earthquake-forecasting models that have been used to assess potential hazards related to earthquake activity.

Aseismic creep

In geology, aseismic creep or fault creep is measurable surface displacement along a fault in the absence of notable earthquakes. Aseismic creep may also occur as "after-slip" days to years after an earthquake. Notable examples of aseismic slip include faults in California.

A cataclastic rock is a type of fault rock that has been wholly or partly formed by the progressive fracturing and comminution of existing rocks, a process known as cataclasis. Cataclasis involves the granulation, crushing, or milling of the original rock, then rigid-body rotation and translation of mineral grains or aggregates before lithification. Cataclastic rocks are associated with fault zones and impact event breccias.

Brittle–ductile transition zone The strongest part of the Earths crust

The brittle-ductile transition zone is the zone of the Earth's crust that marks the transition from the upper, more brittle crust to the lower, more ductile crust. For quartz and feldspar-rich rocks in continental crust, the transition zone occurs at an approximate depth of 20 km, at temperatures of 250–400°C. At this depth, rock becomes less likely to fracture, and more likely to deform ductilely by creep because the brittle strength of a material increases with confining pressure, while its ductile strength decreases with increasing temperature.

Fracture (geology) Geologic structure

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

Pseudotachylyte

Pseudotachylyte or Pseudotachylite is a cohesive glassy or very fine-grained rock that occurs as veins and often contains inclusions of wall-rock fragments. Pseudotachylyte is typically dark in color; and is glassy in appearance. It was named after its appearance resembling the basaltic glass, tachylyte. Typically, the glass is completely devitrified into very fine-grained material with radial and concentric clusters of crystals. The glass may also contain crystals with quench textures that formed via crystallization from the melt. Chemical composition of pseudotachylyte generally reflects the local bulk chemistry. Pseudotachylyte may form via frictional melting of faults, in large-scale landslides, and by impact processes. Many researchers often define the rock as one formed via the melting. However, the original description/definition by Shand did not include interpretation about its generation, and it is suggested that there are pseudotachylytes formed via comminution without melting. Quartz in pseudotachylyte from the Vredefort impact site displays high residual stress as documented by synchrotron X-ray Laue microdiffraction.

A slow earthquake is a discontinuous, earthquake-like event that releases energy over a period of hours to months, rather than the seconds to minutes characteristic of a typical earthquake. First detected using long term strain measurements, most slow earthquakes now appear to be accompanied by fluid flow and related tremor, which can be detected and approximately located using seismometer data filtered appropriately. That is, they are quiet compared to a regular earthquake, but not "silent" as described in the past.

A supershear earthquake is an earthquake in which the propagation of the rupture along the fault surface occurs at speeds in excess of the seismic shear wave (S-wave) velocity. This causes an effect analogous to a sonic boom.

Porosity or void fraction is a measure of the void spaces in a material, and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure the "accessible void", the total amount of void space accessible from the surface.

Igneous rock Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or lava.

Thermoporometry and cryoporometry are methods for measuring porosity and pore-size distributions. A small region of solid melts at a lower temperature than the bulk solid, as given by the Gibbs–Thomson equation. Thus, if a liquid is imbibed into a porous material, and then frozen, the melting temperature will provide information on the pore-size distribution. The detection of the melting can be done by sensing the transient heat flows during phase transitions using differential scanning calorimetry – DSC thermoporometry, measuring the quantity of mobile liquid using nuclear magnetic resonance – NMR cryoporometry (NMRC) or measuring the amplitude of neutron scattering from the imbibed crystalline or liquid phases – ND cryoporometry (NDC).

Surface rupture

Surface rupture is the visible offset of the ground surface when an earthquake rupture along a fault affects the Earth's surface. Surface rupture is opposed by buried rupture, where there is no displacement at ground level. This is a major risk to any structure that is built across a fault zone that may be active, in addition to any risk from ground shaking. Surface rupture entails vertical or horizontal movement, on either side of a ruptured fault. Surface rupture can affect large areas of land.

Christie D. Rowe is a Professor of Geology at McGill University. She holds a Canada Research Chair in Earthquake Geology and was awarded the 2017 Geological Association of Canada W. W. Hutchison Medal.

Fault zone hydrogeology

Fault zone hydrogeology is the study of how brittlely deformed rocks alter fluid flows in different lithological settings, such as clastic, igneous and carbonate rocks. Fluid movements, that can be quantified as permeability, can be facilitated or impeded due to the existence of a fault zone. This is because different mechanisms that deform rocks can alter porosity and permeability within a fault zone. Fluids involved in a fault system generally are groundwater and hydrocarbons.

Marie Violay French expert in rock mechanics

Marie Violay is a French expert in rock mechanics. She is an Assistant Professor and the head of the Laboratory of Experimental Rock Mechanics at EPFL. She teaches rocks mechanics, geophysics for engineers and geology.

References

  1. "Visual Glossary – asperity". USGS.gov. Archived from the original on 2008-04-10. Retrieved 2008-05-10. An asperity is an area on a fault that is stuck. The earthquake rupture usually begins at an asperity.
  2. Kevin M. Frye; Chris Marone (2002-11-20). "Effect of humidity on granular friction at room temperature" (PDF). Journal of Geophysical Research. 107 (B11): ETG 11–1–ETG 11–13. Bibcode:2002JGRB..107.2309F. doi: 10.1029/2001JB000654 . Retrieved 2008-05-10.
  3. Chris Marone (1997-05-29). "The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle" (PDF). Nature . Macmillan Magazines Ltd. Retrieved 2008-05-10.
  4. Chris Marone (2004-01-29). "Faults greased at high speed" (PDF). Nature . Retrieved 2008-05-10.
  5. 1 2 Violay, M.; Nielsen, S.; Gibert, B.; Spagnuolo, E.; Cavallo, A.; Azais, P.; Vinciguerra S. & Di Toro, G. (2013). "Effect of water on the frictional behavior of cohesive rocks during earthquakes". Geology. 42 (1): 27–30. Bibcode:2014Geo....42...27V. doi:10.1130/G34916.1.
  6. Nielsen, S.; Di Toro, G. & Griffith, W. A. (2010). "Friction and roughness of a melting rock surface". Geophysical Journal International. 182 (1): 299–310. Bibcode:2010GeoJI.182..299N. doi: 10.1111/j.1365-246X.2010.04607.x .
  7. Di Toro, G. G.; Han, R. R.; Hirose, T.; De Paola, N.; Nielsen, S.; Mizoguchi, K.; Ferr. F.; Cocco M. & Shimamoto, T. (2011). "Fault lubrication during earthquakes". Nature. 471 (7339): 494–498. Bibcode:2011Natur.471..494D. doi:10.1038/nature09838. PMID   21430777.
  8. Lachenbruch, A. H. (1980). "Frictional heating, fluid pressure, and the resistance to fault motion" (PDF). Journal of Geophysical Research: Solid Earth. 85 (B11): 6097–6112. Bibcode:1980JGR....85.6097L. doi:10.1029/JB085iB11p06097.
  9. Altenberger, U.; Prosser, G.; Grande, A.; Günter, C. & Langone, A. (2013). "A seismogenic zone in the deep crust indicated by pseudotachylytes and ultramylonites in granulite-facies rocks of Calabria (Southern Italy)". Contributions to Mineralogy and Petrology. 166 (4): 975–994. Bibcode:2013CoMP..166..975A. doi:10.1007/s00410-013-0904-3.

Karner, S. L.; Marone, C. & Evans, B. (1997). "Laboratory study of fault healing and lithification in simulated fault gouge under hydrothermal conditions" (PDF). Tectonophysics. 277 (1): 41–55. Bibcode:1997Tectp.277...41K. doi:10.1016/S0040-1951(97)00077-2. Archived from the original (PDF) on 2016-03-04.

Byerlee, J. (1978). "Friction of rocks" (PDF). Pure and Applied Geophysics. 116 (4–5): 615–626. Bibcode:1978PApGe.116..615B. doi:10.1007/BF00876528.