Stylolite

Last updated
Macrostylolites in a limestone. Stylolites mcr1.jpg
Macrostylolites in a limestone.

Stylolites (Greek: stylos, pillar; lithos, stone) are serrated surfaces within a rock mass at which mineral material has been removed by pressure dissolution, in a deformation process that decreases the total volume of rock. Minerals which are insoluble in water, such as clays, pyrite and oxides, as well as insoluble organic matter, [1] remain within the stylolites and make them visible. Sometimes host rocks contain no insoluble minerals, in which case stylolites can be recognized by change in texture of the rock. [2] They occur most commonly in homogeneous rocks, [3] carbonates, cherts, sandstones, but they can be found in certain igneous rocks and ice. Their size vary from microscopic contacts between two grains (microstylolites) to large structures up to 20 m in length and up to 10 m in amplitude in ice. [4] Stylolites usually form parallel to bedding, because of overburden pressure, but they can be oblique or even perpendicular to bedding, as a result of tectonic activity. [5] [6]

Contents

Classification of stylolites

In structural geology and diagenesis, pressure solution or pressure dissolution is a deformation mechanism that involves the dissolution of minerals at grain-to-grain contacts into an aqueous pore fluid in areas of relatively high stress and either deposition in regions of relatively low stress within the same rock or their complete removal from the rock within the fluid. It is an example of diffusive mass transfer. Stylolites are formed by this process.

Stylolites can be classified according to their geometry or their orientation and relationship to bedding. [4]

Geometric classification

Park and Schot (1968) recognized six different geometries in stylolites: [4]

  1. Simple or primitive wave-like
  2. Sutured type
  3. Up-peak type (rectangular type)
  4. Down-peak type (rectangular type)
  5. Sharp-peak type (tapered and pointed)
  6. Seismogram type

Relationship to bedding

Horizontal stylolites
This is the most commonly observed stylolite type. They occur parallel or nearly parallel to the bedding of rocks. This type is most frequently found in layered sedimentary rocks, mostly in carbonate rocks, which have not been affected by intensive tectonic structural activity or metamorphism.
Inclined stylolites or slickolites
This type occurs oblique to bedding. It appears in rocks which are both affected or unaffected by tectonic activity, and can also be found in metamorphic and layered igneous rocks.
Horizontal-inclined (vertical) or crosscutting stylolites
This type is a combination of horizontal and inclined types of stylolites. Horizontal stylolites usually have a higher amplitude than inclined stylolites. Horizontal-inclined can be found in rocks affected by pressure parallel to the bedding plane followed by pressure perpendicular to bedding.
Vertical stylolites
This type of stylolite is related to the bedding at right angles. It may or may not be associated with tectonic activity. It is caused by pressure acting perpendicularly to the bedding.
Interconnecting network stylolites
This type is a network of stylolites, which are related to each other with relatively small angles. This type can be divided into two subtypes. Stylolites of subtype A are characterized by higher amplitudes. They are related to the bedding either horizontally, or at a small angle. Stylolites of subtype B usually appear in rocks which have been affected by tectonic and/or metamorphic activity. These stylolites have a low amplitude with undulations. Their relation to the bedding can vary from horizontal to vertical.
Vertical-inclined (horizontal) or crosscutting stylolites
This type is a combination of horizontal or inclined and vertical stylolite types. In this case the inclined or horizontal stylolites were formed first and the vertical later. This type can be divided into two subtypes by directions of displacement of the inclined stylolites. In subtype A, the displacements could have happened during vertical stylolization, while in subtype B, the displacements could have happened before vertical stylolization.

Development

A stylolite is not a structural fracture, although they have been described as a form of 'anticrack', with the sides moving together rather than apart. [7] Proof exists in the form of fossiliferous limestone where fossils are crosscut by a stylolite and only one half still exists; the other half has been dissolved away. Rye & Bradbury (1988) [8] investigated 13/12C and 18/16O stable isotope systematics in limestone on either side of a stylolite plane and found differences confirming different degrees of fluid-rock interaction.

In order for a stylolite to develop, a solution into which minerals can dissolve needs to be present, along with a pore network through which dissolved solids can migrate by advection or diffusion from the developing stylolite. Stylolite development can be improved with porosity, as it localizes stress on grains, increasing the stress there. Therefore, it is suggested that bedding-parallel stylolites form in areas of high porosity, [9] and most of the transverse stylolites form along preexisting fractures. [2]

Significance

Stylolites are significant in several fields. In petrology, stylolites are important because they alter rock fabrics and dissolve solids that precipitate as cement. In stratigraphy, weathering of stylolites generates apparent bedding in many stratigraphic sections and loss of material along stylolites can have a result similar to erosion, with significant stratigraphic thinning. In hydrology, stylolites prevent fluid flow and, in other settings, serve for fluid flow. Also, stylolites are indicators of compressive stress in tectonic studies, and development of transverse stylolites contributes to crustal shortening parallel to the direction of their column. [2]

See also

Related Research Articles

Structural geology Science of the description and interpretation of deformation in the Earths crust

Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation due to plate tectonics.

Sandstone Type of sedimentary rock

Sandstone is a clastic sedimentary rock composed mainly of sand-sized silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks.

Shale Fine-grained, clastic sedimentary rock

Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals and tiny fragments of other minerals, especially quartz and calcite. Shale is characterized by its tendency to split into thin layers (laminae) less than one centimeter in thickness. This property is called fissility. Shale is the most common sedimentary rock.

Sedimentary rock Rock formed by the deposition and subsequent cementation of material

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

Metamorphic rock Rock that was subjected to heat and pressure

Metamorphic rocks arise from the transformation of existing rock to new types of rock, in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

Sedimentology encompasses the study of modern sediments such as sand, silt, and clay, and the processes that result in their formation, transport, deposition and diagenesis. Sedimentologists apply their understanding of modern processes to interpret geologic history through observations of sedimentary rocks and sedimentary structures.

Fault (geology) Fracture or discontinuity in rock across which there has been displacement

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.

Metamorphism Change of minerals in pre-existing rocks without melting into liquid magma

Metamorphism is the transformation of existing rock to rock with a different mineral composition or texture. Metamorphism takes place at temperatures in excess of 150 to 200 °C, and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. Metamorphism is distinct from weathering or diagenesis, which are changes that take place at or just beneath Earth's surface.

Lithology Description of its physical characteristics of a rock unit

The lithology of a rock unit is a description of its physical characteristics visible at outcrop, in hand or core samples, or with low magnification microscopy. Physical characteristics include colour, texture, grain size, and composition. Lithology may refer to either a detailed description of these characteristics, or a summary of the gross physical character of a rock. Examples of lithologies in the second sense include sandstone, slate, basalt, or limestone.

Skarn Hard, coarse-grained, hydrothermally altered metamorphic rocks

Skarns or tactites are hard, coarse-grained metamorphic rocks that form by a process called metasomatism. Skarns tend to be rich in calcium-magnesium-iron-manganese-aluminium silicate minerals, which are also referred to as calc-silicate minerals. These minerals form as a result of alteration which occurs when hydrothermal fluids interact with a protolith of either igneous or sedimentary origin. In many cases, skarns are associated with the intrusion of a granitic pluton found in and around faults or shear zones that intrude into a carbonate layer composed of either dolomite or limestone. Skarns can form by regional, or contact metamorphism and therefore form in relatively high temperature environments. The hydrothermal fluids associated with the metasomatic processes can originate from either magmatic, metamorphic, meteoric, marine, or even a mix of these. The resulting skarn may consist of a variety of different minerals which are highly dependent on both the original composition of the hydrothermal fluid and the original composition of the protolith.

Siltstone Sedimentary rock which has a grain size in the silt range

Siltstone, also known as aleurolite, is a clastic sedimentary rock that is composed mostly of silt. It is a form of mudrock with a low clay mineral content, which can be distinguished from shale by its lack of fissility.

Mudstone Fine grained sedimentary rock whose original constituents were clays or muds

Mudstone, a type of mudrock, is a fine-grained sedimentary rock whose original constituents were clays or muds. Mudstone is distinguished from shale by its lack of fissility.

Relative dating

Relative dating is the science of determining the relative order of past events, without necessarily determining their absolute age. In geology, rock or superficial deposits, fossils and lithologies can be used to correlate one stratigraphic column with another. Prior to the discovery of radiometric dating in the early 20th century, which provided a means of absolute dating, archaeologists and geologists used relative dating to determine ages of materials. Though relative dating can only determine the sequential order in which a series of events occurred, not when they occurred, it remains a useful technique. Relative dating by biostratigraphy is the preferred method in paleontology and is, in some respects, more accurate. The Law of Superposition, which states that older layers will be deeper in a site than more recent layers, was the summary outcome of 'relative dating' as observed in geology from the 17th century to the early 20th century.

Rock microstructure includes the texture of a rock and the small-scale rock structures. The words texture and microstructure are interchangeable, with the latter preferred in modern geological literature. However, texture is still acceptable because it is a useful means of identifying the origin of rocks, how they formed, and their appearance.

Cross-bedding Sedimentary rock strata at differing angles

In geology, cross-bedding, also known as cross-stratification, is layering within a stratum and at an angle to the main bedding plane. The sedimentary structures which result are roughly horizontal units composed of inclined layers. The original depositional layering is tilted, such tilting not being the result of post-depositional deformation. Cross-beds or "sets" are the groups of inclined layers, which are known as cross-strata.

Bed (geology)

In geology, a bed is a layer of sediment, sedimentary rock, or pyroclastic material "bounded above and below by more or less well-defined bedding surfaces". Specifically in sedimentology, a bed can be defined in one of two major ways. First, Campbell and Reineck and Singh use the term bed to refer to a thickness-independent layer comprising a coherent layer of sedimentary rock, sediment, or pyroclastic material bounded above and below by surfaces known as bedding planes. By this definition of bed, laminae are small beds that constitute the smallest (visible) layers of a hierarchical succession and often, but not always, internally comprise a bed.

Cleavage (geology)

Cleavage, in structural geology and petrology, describes a type of planar rock feature that develops as a result of deformation and metamorphism. The degree of deformation and metamorphism along with rock type determines the kind of cleavage feature that develops. Generally these structures are formed in fine grained rocks composed of minerals affected by pressure solution.

Pressure solution Rock deformation mechanism involving minerals dissolution under mechanical stress

In structural geology and diagenesis, pressure solution or pressure dissolution is a deformation mechanism that involves the dissolution of minerals at grain-to-grain contacts into an aqueous pore fluid in areas of relatively high stress and either deposition in regions of relatively low stress within the same rock or their complete removal from the rock within the fluid. It is an example of diffusive mass transfer.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

Hydrothermal mineral deposits are accumulations of valuable minerals which formed from hot waters circulating in Earth's crust through fractures. They eventually create metallic-rich fluids concentrated in a selected volume of rock, which become supersaturated and then precipitate ore minerals. In some occurrences, minerals can be extracted for a profit by mining. Discovery of mineral deposits consumes considerable time and resources and only about one in every one thousand prospects explored by companies are eventually developed into a mine. A mineral deposit is any geologically significant concentration of an economically useful rock or mineral present in a specified area. The presence of a known but unexploited mineral deposit implies a lack of evidence for profitable extraction.

References

  1. Dunham J.B.; Larter S. (1981). "Association of Stylolitic Carbonates and Organic Matter: Implications for Temperature Control on Stylolite Formation". AAPG Bulletin. 65.
  2. 1 2 3 Middleton, Gerard V., Encyclopedia of sediments and sedimentary rocks, 2003, p. 90-92
  3. Golding, H. G.; Conolly, J. R. (1962). "Stylolites in volcanic rocks". Journal of Sedimentary Petrology. 32 (3): 534–538. doi:10.1306/74D70D12-2B21-11D7-8648000102C1865D.
  4. 1 2 3 Park, Won C.; Schot, Erik H. (1968). "Stylolites: their nature and origin". Journal of Sedimentary Petrology. 38 (1): 175–191. doi:10.1306/74D71910-2B21-11D7-8648000102C1865D.
  5. Andrews, Lynn M.; Railsbak, L. Bruce (1997). "Controls on stylolite development: morphologic, lithologic, and temporal evidence form bedding-parallel and transverse stylolites from the U.S. Appalachians". Journal of Geology. 105: 59–73. doi:10.1086/606147. JSTOR   30079885.
  6. Petrology of the sedimentary rocks, F.H. Hatch, R.H. Rastall p. 382
  7. Fletcher, C.C. and Pollard, D.D. 1981 Anticrack model for pressure solution surfaces. Geology, 9, 419-24.
  8. Rye, DM, and Bradbury, HJ (1988): Fluid flow in the crust: an example from a Pyrenean thrust ramp. American Journal of Science (288): 197-235.
  9. Merino, E., Ortoleva, P., and Strickholm, P., 1983. Generation of evenly-spaced pressure-solution seams during (late) diagenesis: a kinetic theory. Contributions to Mineralogy and Petrology, 82: 360-370.