African plate

Last updated
African plate
AfricanPlate.png
Type Major
Approximate area61,300,000 km2 (23,700,000 sq mi) [1]
Features Africa, Atlantic Ocean, Mediterranean Sea, Red Sea

The African plate, also known as the Nubian plate, is a major tectonic plate that includes much of the continent of Africa (except for its easternmost part) and the adjacent oceanic crust to the west and south. It is bounded by the North American plate and South American plate to the west (separated by the Mid-Atlantic Ridge); the Arabian plate and Somali plate to the east; the Eurasian plate, Aegean Sea plate and Anatolian plate to the north; and the Antarctic plate to the south.

Contents

Between 60  million years ago and 10  million years ago, the Somali plate began rifting from the African plate along the East African Rift. [2] Since the continent of Africa consists of crust from both the African and the Somali plates, some literature refers to the African plate as the Nubian plate to distinguish it from the continent as a whole. [3]

Boundaries

The western edge of the African plate is a divergent boundary with the North American plate to the north and the South American plate to the south which forms the central and southern part of the Mid-Atlantic Ridge. The African plate is bounded on the northeast by the Arabian plate, the southeast by the Somali plate, the north by the Eurasian plate, the Aegean Sea plate, and the Anatolian plate, and on the south by the Antarctic plate at the Southwest Indian Ridge. All of these are divergent or spreading boundaries with the exception of the northern boundary and a short segment near the Azores known as the Terceira Rift.

Components

Tectonic dynamics in the Adriatic basin - The western limit of the Adriatic basin currently shifts by about 40 mm per year towards the east, under the thrust of the Eurasian plate, resulting in a gradual narrowing of the Adriatic Sea. The Po Valley is part of the African plate. (Text in Italian) Italia Interazione placche tettoniche.JPG
Tectonic dynamics in the Adriatic basin - The western limit of the Adriatic basin currently shifts by about 40 mm per year towards the east, under the thrust of the Eurasian plate, resulting in a gradual narrowing of the Adriatic Sea. The Po Valley is part of the African plate. (Text in Italian)

The African plate includes several cratons, stable blocks of old crust with deep roots in the subcontinental lithospheric mantle, and less stable terranes, which came together to form the African continent during the assembly of the supercontinent Pangea around 250 million years ago. The cratons are from south to north, the Kalahari Craton, Congo Craton, Tanzania Craton and West African Craton. The cratons were widely separated in the past, but came together during the Pan-African orogeny and stayed together when Gondwana split up. The cratons are connected by orogenic belts, regions of highly deformed rock where the tectonic plates have engaged.

The Saharan Metacraton has been tentatively identified as the remains of a craton that has become detached from the subcontinental lithospheric mantle, but alternatively may consist of a collection of unrelated crustal fragments swept together during the Pan-African orogeny.

In some areas, the cratons are covered by sedimentary basins, such as the Tindouf Basin, Taoudeni Basin and Congo Basin, where the underlying archaic crust is overlaid by more recent Neoproterozoic sediments. The plate includes shear zones such as the Central African Shear Zone (CASZ) where, in the past, two sections of the crust were moving in opposite directions, and rifts such as the Anza Trough where the crust was pulled apart, and the resulting depression filled with more modern sediment.

Modern movements

Today, the African plate is moving over Earth's surface at a speed of 32.51 km per million years relative to the Earth's "average" crust velocities (see NNR-MORVEL56) Motion of Nubia Plate.gif
Today, the African plate is moving over Earth's surface at a speed of 32.51 km per million years relative to the Earth's "average" crust velocities (see NNR-MORVEL56)
Map of East Africa showing some of the historically active volcanoes (red triangles) and the Afar Triangle (shaded, center) - a triple junction where three plates are pulling away from one another: the Arabian plate, the African plate, and the Somali plate (USGS) Tectonical map of East Africa.png
Map of East Africa showing some of the historically active volcanoes (red triangles) and the Afar Triangle (shaded, center) – a triple junction where three plates are pulling away from one another: the Arabian plate, the African plate, and the Somali plate (USGS)

The African plate is rifting in the eastern interior of the African continent along the East African Rift. This rift zone separates the African plate to the west from the Somali plate to the east. One hypothesis proposes a mantle plume rising beneath the Afar region pushing the crust outward, whereas an opposing hypothesis explains the rifting by dynamics in the crust, as a break in the African plate along a line of maximum weakness as plates to its east move rapidly northward.

The African plate's speed is estimated at 2.15 cm (0.85 in) per year. [4] It has been moving over the past 100 million years or so in a general northeast direction. It is pushing closer to the Eurasian plate, causing subduction where oceanic crust is converging with continental crust (e.g. portions of the central and eastern Mediterranean). In the western Mediterranean, the relative motions of the Eurasian and African plates produce a combination of lateral and compressive forces, concentrated in a zone known as the Azores–Gibraltar Fault Zone. Along its northeast margin, the African plate is bounded by the Red Sea Rift where the Arabian plate is moving away from the African plate.

The New England hotspot in the Atlantic Ocean has probably created a short line of mid- to late-Tertiary age seamounts on the African plate but appears to be currently inactive. [5]

Related Research Articles

<span class="mw-page-title-main">Paleogene</span> First period of the Cenozoic Era (66–23 million years ago)

The Paleogene Period is a geologic period and system that spans 43 million years from the end of the Cretaceous Period 66 Ma to the beginning of the Neogene Period 23.03 Ma. It is the first period of the Cenozoic Era, the tenth period of the Phanerozoic and is divided into the Paleocene, Eocene, and Oligocene epochs. The earlier term Tertiary Period was used to define the time now covered by the Paleogene Period and subsequent Neogene Period; despite no longer being recognized as a formal stratigraphic term, "Tertiary" still sometimes remains in informal use. Paleogene is often abbreviated "Pg", although the United States Geological Survey uses the abbreviation "Pe" for the Paleogene on the Survey's geologic maps.

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Eurasian plate</span> Tectonic plate which includes most of the continent of Eurasia

The Eurasian plate is a tectonic plate that includes most of the continent of Eurasia, with the notable exceptions of the Indian subcontinent, the Arabian subcontinent and the area east of the Chersky Range in eastern Siberia. It also includes oceanic crust extending westward to the Mid-Atlantic Ridge and northward to the Gakkel Ridge.

<span class="mw-page-title-main">North American plate</span> Large tectonic plate including most of North America, Greenland and part of Siberia

The North American plate is a tectonic plate containing most of North America, Cuba, the Bahamas, extreme northeastern Asia, and parts of Iceland and the Azores. With an area of 76 million km2 (29 million sq mi), it is the Earth's second largest tectonic plate, behind the Pacific plate.

<span class="mw-page-title-main">Arctica</span> Ancient continent in the Neoarchean era

Arctica, or Arctida is a hypothetical ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.

<span class="mw-page-title-main">Somali plate</span> Minor tectonic plate including the east coast of Africa and the adjoining seabed

The Somali plate is a minor tectonic plate which straddles the Equator in the Eastern Hemisphere. It is currently in the process of separating from the African plate along the East African Rift Valley. It is approximately centered on the island of Madagascar and includes about half of the east coast of Africa, from the Gulf of Aden in the north through the East African Rift Valley. The southern boundary with the Nubian–African plate is a diffuse plate boundary consisting of the Lwandle plate.

<span class="mw-page-title-main">East African Rift</span> Active continental rift zone in East Africa

The East African Rift (EAR) or East African Rift System (EARS) is an active continental rift zone in East Africa. The EAR began developing around the onset of the Miocene, 22–25 million years ago. It was formerly considered to be part of a larger Great Rift Valley that extended north to Asia Minor.

The Pan-African orogeny was a series of major Neoproterozoic orogenic events which related to the formation of the supercontinents Gondwana and Pannotia about 600 million years ago. This orogeny is also known as the Pan-Gondwanan or Saldanian Orogeny. The Pan-African orogeny and the Grenville orogeny are the largest known systems of orogenies on Earth. The sum of the continental crust formed in the Pan-African orogeny and the Grenville orogeny makes the Neoproterozoic the period of Earth's history that has produced most continental crust.

<span class="mw-page-title-main">Afar Triple Junction</span> Place where three tectonic rifts meet in East Africa

The Afar Triple Junction is located along a divergent plate boundary dividing the Nubian, Somali, and Arabian plates. This area is considered a present-day example of continental rifting leading to seafloor spreading and producing an oceanic basin. Here, the Red Sea Rift meets the Aden Ridge and the East African Rift. The latter extends a total of 6,500 kilometers (4,000 mi) from the Afar Triangle to Mozambique.

<span class="mw-page-title-main">Southwest Indian Ridge</span> A mid-ocean ridge on the bed of the south-west Indian Ocean and south-east Atlantic Ocean

The Southwest Indian Ridge (SWIR) is a mid-ocean ridge located along the floors of the south-west Indian Ocean and south-east Atlantic Ocean. A divergent tectonic plate boundary separating the Somali Plate to the north from the Antarctic Plate to the south, the SWIR is characterised by ultra-slow spreading rates (only exceeding those of the Gakkel Ridge in the Arctic) combined with a fast lengthening of its axis between the two flanking triple junctions, Rodrigues (20°30′S70°00′E) in the Indian Ocean and Bouvet (54°17′S1°5′W) in the Atlantic Ocean.

<span class="mw-page-title-main">Laurentia</span> Craton forming the geological core of North America

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and the Hebridean Terrane in northwest Scotland. During other times in its past, Laurentia has been part of larger continents and supercontinents and consists of many smaller terranes assembled on a network of early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

This is a list of articles related to plate tectonics and tectonic plates.

<span class="mw-page-title-main">Saharan Metacraton</span> Large area of continental crust in the north-central part of Africa

The Saharan Metacraton is a large area of continental crust in the north-central part of Africa. Whereas a craton is an old and stable part of the lithosphere, the term "metacraton" is used to describe a craton that has been remobilized during an orogenic event, but where the characteristics of the original craton are still identifiable. The geology of the continent has only been partially explored, and other names have been used to describe the general area that reflect different views of its nature and extent. These include "Nile Craton", "Sahara Congo Craton", "Eastern Saharan Craton" and "Central Saharan Ghost Craton". This last term is because the older rocks are almost completely covered by recent sediments and desert sands, making geological analysis difficult.

<span class="mw-page-title-main">Opening of the North Atlantic Ocean</span> Breakup of Pangea

The opening of the North Atlantic Ocean is a geological event that has occurred over millions of years, during which the supercontinent Pangea broke up. As modern-day Europe and North America separated during the final breakup of Pangea in the early Cenozoic Era, they formed the North Atlantic Ocean. Geologists believe the breakup occurred either due to primary processes of the Iceland plume or secondary processes of lithospheric extension from plate tectonics.

<span class="mw-page-title-main">Tectonic evolution of Patagonia</span>

Patagonia comprises the southernmost region of South America, portions of which lie on either side of the Argentina-Chile border. It has traditionally been described as the region south of the Rio, Colorado, although the physiographic border has more recently been moved southward to the Huincul fault. The region's geologic border to the north is composed of the Rio de la Plata craton and several accreted terranes comprising the La Pampa province. The underlying basement rocks of the Patagonian region can be subdivided into two large massifs: the North Patagonian Massif and the Deseado Massif. These massifs are surrounded by sedimentary basins formed in the Mesozoic that underwent subsequent deformation during the Andean orogeny. Patagonia is known for its vast earthquakes and the damage they cause.

<span class="mw-page-title-main">Plate theory (volcanism)</span> Model of volcanic activities on Earth

The plate theory is a model of volcanism that attributes all volcanic activity on Earth, even that which appears superficially to be anomalous, to the operation of plate tectonics. According to the plate theory, the principal cause of volcanism is extension of the lithosphere. Extension of the lithosphere is a function of the lithospheric stress field. The global distribution of volcanic activity at a given time reflects the contemporaneous lithospheric stress field, and changes in the spatial and temporal distribution of volcanoes reflect changes in the stress field. The main factors governing the evolution of the stress field are:

  1. Changes in the configuration of plate boundaries.
  2. Vertical motions.
  3. Thermal contraction.

Intraplate volcanism is volcanism that takes place away from the margins of tectonic plates. Most volcanic activity takes place on plate margins, and there is broad consensus among geologists that this activity is explained well by the theory of plate tectonics. However, the origins of volcanic activity within plates remains controversial.

References

  1. "Sizes of Tectonic or Lithospheric Plates". About.com. Archived from the original on 5 June 2016. Retrieved 30 June 2015.
  2. "Somali Plate". Ashten Sawitsky. Retrieved 30 June 2015.
  3. Chu, D.; Gordon, R.G. (1999). "Evidence for motion between Nubia and Somalia along the Southwest Indian ridge". Nature. 398 (6722): 64–67. Bibcode:1999Natur.398...64C. doi:10.1038/18014. S2CID   4403043.
  4. Huang, Zhen Shao (1997). "Speed of the Continental Plates". The Physics Factbook. Retrieved 7 June 2018.
  5. Duncan, R.A. (1984). "Age progressive volcanism in the New England Seamounts and the opening of the central Atlantic Ocean". Journal of Geophysical Research: Solid Earth. 89 (B12): 9980–90. Bibcode:1984JGR....89.9980D. doi:10.1029/jb089ib12p09980.