Owambo Basin

Last updated
Owambo Basin
Namibia relief location map.jpg
Red pog.svg
Location of the Owambo Basin in Namibia
Owambo Basin.jpg
Topographical map of the Owambo Basin
Stratigraphic Column Owambo Basin.jpg
Stratigraphic column of the Owambo Basin
Damara Sequence.jpg
Stratigraphic cross-section of the Owambo Basin with the Damara Sequence highlighted in red, modified from Komona et al.
Coordinates 18°47′07″S16°15′50″E / 18.78528°S 16.26389°E / -18.78528; 16.26389
Location Congo Craton, Southern Africa
Region Kalahari Desert
CountryFlag of Angola.svg  Angola
Flag of Namibia.svg  Namibia
Cities Tsumeb
Characteristics
On/OffshoreOnshore
Geology
Basin type Pull-apart basin
Plate African
Age Neoproterozoic-Cretaceous
Stratigraphy Stratigraphy

The Owambo Basin is a sedimentary basin located on the Congo Craton in Southern Africa that extends from southern Angola into Namibia and includes the Etosha Pan. It is bound on the southern and western sides by the Damara Belt in Northern Namibia, and by the Cubango River to the East. [1] The northern boundary is scientifically disputed, but is currently mapped by most stratigraphers to include southern Angola with the boundary set at the Kunene River. The Owambo Basin is host to two famous regions: Tsumeb, a major Namibian city and site of a formerly active copper mine with exceptional mineralogical variability producing museum quality rare specimens, [2] and Etosha National Park, the largest protected wildlife sanctuary in Namibia centered around Etosha Pan.

Contents

Local area

Provenances/Regions that are included in the Owambo Basin are:

Namibia

Angola

Tectonic history

Rifting of the Congo Craton and formation of the Owambo Basin with subsequent deposition Owambo Basin Rift.jpg
Rifting of the Congo Craton and formation of the Owambo Basin with subsequent deposition
Compression of the Owambo Basin in the post-rift stage of the formation of Gondwana Compression Owambo Basin.jpg
Compression of the Owambo Basin in the post-rift stage of the formation of Gondwana

Congo Craton origin

The Owambo Basin's basement is the Congo Craton, composed of solid granite and gneiss that likely devolatilized during magmatic events over 2.2BYA, meaning that it is exceptionally old and highly rigid. Since its original formation, the Congo Craton has undergone a series of collisional and rifting events including:

Creation of the Owambo Basin

The breakup of Rodinia (Late Precambrian) is the origin of the original depositional series of the Owambo Basin. The rifting apart of the Congo Craton from the Rodinean shallow sea created a classic pull-apart basin. Pull-apart basins are characterized by faults that create an area of crustal extension, causing uplift at the edges and a sinking of the center, which is infilled by sediment or, in this case, a shallow sea (See Image 3). [4] The deposition of the Nosib Formation (900-750 Ma) is the original deposition from the mass wasting of the newly uplifted edges of the Congo Craton, followed by the Otavi Formation (750-650 Ma), composed of dolomite and limestone from the formation of the shallow sea. [1]

Formation of Gondwana

The pull-apart basin was then compressed when the Congo Craton was forced back together in the formation of the Gondwana supercontinent. This caused extensive uplift of the Owambo Basin edges and deepening of the basin's center(see Image 4), resulting in a massive erosional event that formed the Mulden Group (600-560 Ma). These three groups (Nosib, Otavi, and Mulden) compose the sedimentary package known as the Damara Supergroup. [5]

Glaciation

The Damara Supergroup has a relatively abrupt end when Gondwana shifts under the South Pole. The entirety of the Congo Craton is overlain by large glaciers from 420 Ma until around 280 Ma, when the continent shifted far enough away from the South Pole to allow deglaciation. As the glaciers melted, deep valleys are carved into the sedimentary Mulden group depositing glacial till along their path. This glacial till is included in the sedimentary package known as the Karoo Group (280-130 Ma). The valleys are filled with water from the melted glaciers and the Owambo Basin is again a shallow marine system with heavy carbonate and organic deposition. [1] [5]

Breakup of Gondwana

Idealized image showing the breakup of Gondwana as South America rifted away from Africa Cratons West Gondwana IT.svg
Idealized image showing the breakup of Gondwana as South America rifted away from Africa

The breakup of Gondwana began in the early Cretaceous (about 184-132 Ma). South America began to drift westward from Africa as the South Atlantic Ocean opened, resulting in complete open marine conditions by 110 Ma. During this, the Owambo Basin was reactivated as a pull-apart rift basin pulling apart from the east to the west, but received compression from the opening of the Damara Belt to its south. [1] This created rotational seismic wrench systems across the basin profile. These wrench systems allowed for intrusions of continental igneous deposits: sills and dikes, along with pegmatites from metasomatized country rock. [5] This intrusion of igneous material and hydrothermal activity led to heavy mineral depositions like the copper ore from the Tsumeb mine. [2]

Desertification

In the mid-Cretaceous, Africa shifted to closer to the equator with the Owambo Basin landing at near 30° South latitude (very close to its current location), causing rapid desertification. This is represented in the stratigraphic sequence by a large depositional sequence that continues through the Quaternary. Beginning in the mid-Cretaceous, deposition of sandstones occur. These are labeled as the Kalahari Sequence, so named after the sand origin, the Kalahari Desert. [1] [4]

Stratigraphy

Neoproterozoic

The earliest formation in the known stratigraphic history of the Owambo Basin comprises what is geologically termed the basement and is compositionally zoned with mostly granite and gneiss. There is a metamorphic overprint on the majority of the granite from the tectonic history of rifting and compression, causing mass devolitilization of the basement rock. This section is overlain by a layer of volcanics, a likely accompaniment to the compression involved in the formation of Rodinia. [3]

Damara Supergroup

Nosib Group

The Nosib Group is charactererized by interbedded marine and continental sediment capped by volcanics. In the USGS stratigraphic column this is associated with the uplift of the Katangan orogeny 880 Ma, created during the series of rifting and compression of the Congo and Kalahari Cratons during the formation of the Gondwana supercontinent. The Owambo Basin is thought to originate at this time as a pull-apart basin filled with sediment from the surrounding uplifted areas, and eventually as a shallow marine system. [5]

Otavi Group

The Otavi Group is composed entirely of shallow marine deposits. During this time period, the Owambo Basin was part of a shallow marine system that resulted in deposition of carbonates and organics, resulting in a layer of limestone and dolomite with interdispersed oolitic shoals. [5]

Mulden Group

The Mulden Group was deposited after a major unconformity created by the uplift from the Kaoko Belt and Damara Belt collisions (580-530 Ma). During this time, the Owambo Basin was drained and exposed at the surface, causing massive erosion with minimal deposition. After 530 Ma, the rebound from the uplift of the Damara orogeny had caused the Owambo Basin to sink and it again filled with water to create a shallow marine system with deposition from both continental and marine organic sources. The stages between when the Owambo Basin was a transgressive vs regressive deposition system are bounded by a black shale marker that runs through the "middle" of the Mulden Group. [5]

Mining

Tsumeb mining operation Tsumeb Bergwerk Stempeleinbau.JPG
Tsumeb mining operation

Though the center of the Owambo Basin is a wildlife preservation area, the surrounding uplifted areas are rich in mineral and ore deposits. In terms of revenue mining is the largest contributor to Namibia's economy, accounting for over 25% of the country's income. The majority of this revenue is centered around diamond mining, however, Namibia is also a large producer of copper, lead, zinc, cement, and uranium. [6] Due to the highly volatile nature of Angola's political system, its resources have been vastly untapped by the boom of the twenty-first century. In 2007, Angola was the third largest producer of diamonds in Africa with only 40% of the potential territory explored. It is also known as a major exporter of iron ore, with potential to market several other mineral resources including manganese, copper, gold, phosphates, marble, uranium, tin, fluorite, feldspar, gypsum, and talc. [6]

Related Research Articles

Rodinia was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago and broke up 750–633 million years ago. Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named 'Pangaea I'. It was renamed 'Rodinia' by McMenamin & McMenamin 1990 who also were the first to produce a reconstruction and propose a temporal framework for the supercontinent.

<span class="mw-page-title-main">Laurasia</span> Northern landmass that formed part of the Pangaea supercontinent

Laurasia was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya during the breakup of Pangaea, drifting farther north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a portmanteau of Laurentia and Asia.

<span class="mw-page-title-main">Geology of the Appalachians</span> Geologic description of the Appalachian Mountains

The geology of the Appalachians dates back more than 1.1 billion years to the Mesoproterozoic era when two continental cratons collided to form the supercontinent Rodinia, 500 million years prior to the later development of the range during the formation of the supercontinent Pangea. The rocks exposed in today's Appalachian Mountains reveal elongate belts of folded and thrust faulted marine sedimentary rocks, volcanic rocks and slivers of ancient ocean floor – strong evidence that these rocks were deformed during plate collision. The birth of the Appalachian ranges marks the first of several mountain building plate collisions that culminated in the construction of the supercontinent Pangea with the Appalachians and neighboring Anti-Atlas mountains near the center. These mountain ranges likely once reached elevations similar to those of the Alps and the Rocky Mountains before they were eroded.

<span class="mw-page-title-main">Congo Craton</span> Precambrian craton that with four others makes up the modern continent of Africa

The Congo Craton, covered by the Palaeozoic-to-recent Congo Basin, is an ancient Precambrian craton that with four others makes up the modern continent of Africa. These cratons were formed between about 3.6 and 2.0 billion years ago and have been tectonically stable since that time. All of these cratons are bounded by younger fold belts formed between 2.0 billion and 300 million years ago.

The Pan-African orogeny was a series of major Neoproterozoic orogenic events which related to the formation of the supercontinents Gondwana and Pannotia about 600 million years ago. This orogeny is also known as the Pan-Gondwanan or Saldanian Orogeny. The Pan-African orogeny and the Grenville orogeny are the largest known systems of orogenies on Earth. The sum of the continental crust formed in the Pan-African orogeny and the Grenville orogeny makes the Neoproterozoic the period of Earth's history that has produced most continental crust.

The natural history of Australia has been shaped by the geological evolution of the Australian continent from Gondwana and the changes in global climate over geological time. The building of the Australian continent and its association with other land masses, as well as climate changes over geological time, have created the unique flora and fauna present in Australia today.

<span class="mw-page-title-main">Laurentia</span> A large continental craton that forms the ancient geological core of the North American continent

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

<span class="mw-page-title-main">Lufilian Arc</span>

<span class="mw-page-title-main">East Antarctic Shield</span> Cratonic rock body which makes up most of the continent Antarctica

The East Antarctic Shield or Craton is a cratonic rock body that covers 10.2 million square kilometers or roughly 73% of the continent of Antarctica. The shield is almost entirely buried by the East Antarctic Ice Sheet that has an average thickness of 2200 meters but reaches up to 4700 meters in some locations. East Antarctica is separated from West Antarctica by the 100–300 kilometer wide Transantarctic Mountains, which span nearly 3,500 kilometers from the Weddell Sea to the Ross Sea. The East Antarctic Shield is then divided into an extensive central craton that occupies most of the continental interior and various other marginal cratons that are exposed along the coast.

The Damara orogeny was part of the Pan-African orogeny. The Damara orogeny occurred late in the creation of Gondwana, at the intersection of the Congo and the Kalahari cratons.

The geology of South Africa is highly varied including cratons, greenstone belts, large impact craters as well as orogenic belts. The geology of the country is the base for a large mining sector that extracts gold, diamonds, iron and coal from world-class deposits. The geomorphology of South Africa consists of a high plateau rimmed to west, south and southeast by the Great Escarpment, and the rugged mountains of the Cape Fold Belt. Beyond this there is strip of narrow coastal plain.

<span class="mw-page-title-main">Tectonic evolution of the Aravalli Mountains</span> Overview article

The Aravalli Mountain Range is a northeast-southwest trending orogenic belt in the northwest part of India and is part of the Indian Shield that was formed from a series of cratonic collisions. The Aravalli Mountains consist of the Aravalli and Delhi fold belts, and are collectively known as the Aravalli-Delhi orogenic belt. The whole mountain range is about 700 km long. Unlike the much younger Himalayan section nearby, the Aravalli Mountains are believed much older and can be traced back to the Proterozoic Eon. They are arguably the oldest geological feature on Earth. The collision between the Bundelkhand craton and the Marwar craton is believed to be the primary mechanism for the development of the mountain range.

<span class="mw-page-title-main">Geological history of Borneo</span>

The base of rocks that underlie Borneo, an island in Southeast Asia, was formed by the arc-continent collisions, continent–continent collisions and subduction–accretion due to convergence between the Asian, India–Australia, and Philippine Sea-Pacific plates over the last 400 million years. The active geological processes of Borneo are mild as all of the volcanoes are extinct. The geological forces shaping SE Asia today are from three plate boundaries: the collisional zone in Sulawesi southeast of Borneo, the Java-Sumatra subduction boundary and the India-Eurasia continental collision.

One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils. Moreover, it consists of many varied lithofacies, making correlation work more difficult. This article describes the major formations of the Paleozoic – Mesozoic Lesser Himalayan Strata, including the Tal Formation, Gondwana Strata, Singtali Formation and Subathu Formation.

<span class="mw-page-title-main">Huangling Anticline</span>

The Huangling Anticline or Complex represents a group of rock units that appear in the middle of the Yangtze Block in South China, distributed across Yixingshan, Zigui, Huangling, and Yichang counties. The group of rock involves nonconformity that sedimentary rocks overlie the metamorphic basement. It is a 73-km long, asymmetrical dome-shaped anticline with axial plane orientating in the north-south direction. It has a steeper west flank and a gentler east flank. Basically, there are three tectonic units from the anticline core to the rim, including Archean to Paleoproterozoic metamorphic basement, Neoproterozoic to Jurassic sedimentary rocks, and Cretaceous fluvial deposit sedimentary cover. The northern part of the core is mainly tonalite-trondhjemite-gneiss (TTG) and Cretaceous sedimentary rock called the Archean Kongling Complex. The middle of the core is mainly the Neoproterozoic granitoid. The southern part of the core is the Neoproterozoic potassium granite. Two basins are situated on the western and eastern flanks of the core, respectively, including the Zigui basin and Dangyang basin. Both basins are synforms while Zigui basin has a larger extent of folding. Yuanan Graben and Jingmen Graben are found within the Dangyang Basin area. The Huangling Anticline is an important area that helps unravel the tectonic history of the South China Craton because it has well-exposed layers of rock units from Archean basement rock to Cretaceous sedimentary rock cover due to the erosion of the anticline.

<span class="mw-page-title-main">Tectonic evolution of Patagonia</span>

Patagonia comprises the southernmost region of South America, portions of which lie on either side of the Argentina-Chile border. It has traditionally been described as the region south of the Rio Colorado, although the physiographic border has more recently been moved southward to the Huincul fault. The region's geologic border to the north is composed of the Rio de la Plata craton and several accreted terranes comprising the La Pampa province. The underlying basement rocks of the Patagonian region can be subdivided into two large massifs: the North Patagonian Massif and the Deseado Massif. These massifs are surrounded by sedimentary basins formed in the Mesozoic that underwent subsequent deformation during the Andean orogeny. Patagonia is known for its vast earthquakes and the damage they cause.

<span class="mw-page-title-main">Geology of Hainan Island</span>

Hainan Island, located in the South China Sea off the Chinese coast and separated from mainland China by the Qiongzhou Strait, has a complex geological history that it has experienced multiple stages of metamorphism, volcanic and intrusive activities, tectonic drifting and more. The oldest rocks, the Proterozoic metamorphic basement, are not widely exposed, but mostly found in the western part of the Island.

<span class="mw-page-title-main">Geology of Namibia</span>

The geology of Namibia encompasses rocks of Paleoproterozoic, Mesoproterozoic and Neoproterozoic and Paleozoic to Cenozoic age. About 46% of the countryʼs surface are bedrock exposure, while the remainder is covered by the young overburden sediments of the Kalahari and Namib deserts.

<span class="mw-page-title-main">Geology of Colorado</span> Geology of the U.S. State of Colorado

The bedrock under the U.S. State of Colorado was assembled from island arcs accreted onto the edge of the ancient Wyoming Craton. The Sonoma orogeny uplifted the ancestral Rocky Mountains in parallel with the diversification of multicellular life. Shallow seas covered the regions, followed by the uplift current Rocky Mountains and intense volcanic activity. Colorado has thick sedimentary sequences with oil, gas and coal deposits, as well as base metals and other minerals.

<span class="mw-page-title-main">Parnaíba Basin</span>

The Parnaíba Basin is a large cratonic sedimentary basin located in the North and Northeast portion of Brazil. About 50% of its areal distribution occurs in the state of Maranhão, and the other 50% occurring in the state of Pará, Piauí, Tocantins, and Ceará. It is one of the largest Paleozoic basins in the South American Platform. The basin has a roughly ellipsoidal shape, occupies over 600,000 km2, and is composed of ~3.4 km of mainly Paleozoic sedimentary rock that overlies localized rifts.

References

  1. 1 2 3 4 5 Miller, R.McG (1997). "Chapter 11 The owambo basin of northern namibia". Sedimentary Basins of the World. 3: 237–268. doi:10.1016/S1874-5997(97)80014-7. ISBN   9780444825711.
  2. 1 2 "Tsumeb Mine (Tsumcorp Mine), Tsumeb, Otjikoto Region (Oshikoto), Namibia". www.mindat.org. Retrieved 2017-04-19.
  3. 1 2 De Waele, B., S. P. Johnson, and S. A. Pisarevsky. "Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: its role in the Rodinia puzzle." Precambrian Research 160.1 (2008): 127-141.
  4. 1 2 Selley, Richard C. (1997). African basins. Vol. 3. Elsevier.
  5. 1 2 3 4 5 6 Kamona, AF (2007). "Stratigraphy and base metal mineralization in the Otavi Mountain Land, Northern Namibia- A review and regional interpretation". Gondwana Research. 11 (3): 396–413. doi:10.1016/j.gr.2006.04.014.
  6. 1 2 "Namibia: Abundant Exploration Opportunities" (PDF). Retrieved 25 April 2017.