Congo Craton

Last updated
Approximate location of Mesoproterozoic (older than 1.3 Ga) cratons within South America-Africa in their Gondwana configuration (c. 550-130 Ma). Cratons West Gondwana.svg
Approximate location of Mesoproterozoic (older than 1.3 Ga) cratons within South America–Africa in their Gondwana configuration (c. 550-130 Ma).

The Congo Craton, covered by the Palaeozoic-to-recent Congo Basin, is an ancient Precambrian craton that with four others (the Kaapvaal, Zimbabwe, Tanzania, and West African cratons) makes up the modern continent of Africa. These cratons were formed between about 3.6 and 2.0 billion years ago and have been tectonically stable since that time. All of these cratons are bounded by younger fold belts formed between 2.0 billion and 300 million years ago.

Contents

The Congo Craton occupies a large part of central southern Africa, extending from the Kasai region of the DRC into Sudan and Angola. It forms parts of the countries of Gabon, Cameroon, and the Central African Republic. A small portion extends into Zambia as well, where it is called the Bangweulu Block.

Congo–São Francisco

The Congo Craton and the São Francisco Craton are stable Archaean blocks that formed a coherent landmass until the opening of the South Atlantic Ocean during the break-up of Gondwana (c. 2000–130 Ma). [1] They stabilised during the Transamazonian orogeny and Eburnean Orogeny and have been affected by a long series of orogens since resulting in similar sequences on both blocks. [2]

Congo–São Francisco experienced three large igneous province (LIP) events at 1380–1370 Ma, c. 1505 Ma, and c. 1110 Ma. The relative position of Congo–São Francisco within the supercontinent Nuna/Columbia can be reconstructed because these LIP events also affected other Precambrian continental blocks. Within Nuna the northern part of Siberia was located adjacent to western São Francisco. 1110 Ma dyke swarms in Angola are absent in Siberia but coincide with the Umkondo LIP on the Kalahari Craton and magmatic event in the Bundelkhand Craton in India, the Amazonian Craton in South America, and the Keweenawan Rift in Laurentia (although the latter was located far from the other continental blocks). [3] A series of 1500 Ma dyke swarms also support the close relation between Congo–São Francisco and Siberia: Kuonamka in Siberia and Curaçá and Chapada Diamantina in São Francisco and Angola. These dyke swarms radiate from a mantle plume centre located in what is now north-eastern Siberia. Magmatic events in Congo (Kunene) and Siberia (Chieress) at 1384 Ma also corroborate the closeness of these two continents during at least 120 million years. [4]

It is possible that the 1110 Ma LIP in Congo–São Francisco, Amazonia, and India was part of a much larger event that also involved West Africa and Kalahari (with a possible but unlikely link to the 1075 Ma Warakurna LIP in Australia). However, while the palaeo-latitudes of India and Kalahari are well constrained, those of Amazonia and Congo–São Francisco are not, making any plate tectonic reconstruction speculative. [5]

At the time for the formation of the supercontinent Gondwana at c. 550 Ma the Congo Craton formed the already amalgamated central African landmass. The southern and eastern margins (modern coordinates) of this landmass was made of the Archaean Angola-Kasai block and Tanzanian Craton. These proto-Congo blocks were deformed in the Palaeoproterozoic Eburnean orogeny but later stabilised. [6]

West Congo Belt

Before the opening of the South Atlantic the São Francisco and Congo cratons were connected by a "cratonic" bridge, the Bahia–Gabon Bridge. The most recent orogenic event on this bridge occurred at 2 Ga, so the connection between São Francisco and Congo must have formed during the Palaeoproterozoic. South of this cratonic bridge the Araçuaí–West Congo orogen evolved in the Neoproterozoic in a sea basin made of oceanic crust, an embayment in the São Francisco–Congo continent. [7]

The West Congo Pan-African Belt includes major magmatic events at c. 1000 and 910 Ma. In the Early Neoproterozoic, the western edge of Congo Craton was the location for the initial rifting of Rodinia before its break-up. During the Neoproterozoic, Central Congo or Bas-Congo became a passive margin on which was deposited 4,000 m (13,000 ft) sediments. At the end of the Neoproterozoic, Bas-Congo was only affected by the Pan-African orogeny at 566 Ma to a limited extent protected by this passive margin and by the thickness of the craton. At 1000 Ma peralkaline magmatism initiated an early transtensional setting along the western edge of the Congo Craton. An LIP at c. 930–920 Ma was followed by felsic magmatism between c. 920–910 Ma which had a short emplacement interval and resulted in a 3,000–4,000 m (9,800–13,100 ft) thick sequence. Mafic-felsic magma sequences (6,000 m (20,000 ft) thick) on the western edge of the Congo Craton are similar to those of the Paraná and Deccan LIPs, but in the Congo Craton the magma source became shallower with time. There was no geodynamic activity along the western Congo margin during the Mesoproterozoic. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Rodinia</span> Hypothetical Neoproterozoic supercontinent

Rodinia was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago and broke up 750–633 million years ago. Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named 'Pangaea I'. It was renamed 'Rodinia' by McMenamin & McMenamin 1990 who also were the first to produce a reconstruction and propose a temporal framework for the supercontinent.

<span class="mw-page-title-main">Laurasia</span> Northern landmass that formed part of the Pangaea supercontinent

Laurasia was the more northern of two large landmasses that formed part of the Pangaea supercontinent from around 335 to 175 million years ago (Mya), the other being Gondwana. It separated from Gondwana 215 to 175 Mya during the breakup of Pangaea, drifting farther north after the split and finally broke apart with the opening of the North Atlantic Ocean c. 56 Mya. The name is a portmanteau of Laurentia and Asia.

<span class="mw-page-title-main">Mesoproterozoic</span> Second era of the Proterozoic Eon

The Mesoproterozoic Era is a geologic era that occurred from 1,600 to 1,000 million years ago. The Mesoproterozoic was the first era of Earth's history for which a fairly definitive geological record survives. Continents existed during the preceding era, but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today, although their arrangement on the Earth's surface was different.

<span class="mw-page-title-main">Columbia (supercontinent)</span> Ancient supercontinent of approximately 2,500 to 1,500 million years ago

Columbia, also known as Nuna or Hudsonland, was one of Earth's ancient supercontinents. It was first proposed by John J.W. Rogers and M. Santosh in 2002 and is thought to have existed approximately 2,500 to 1,500 million years ago, in the Paleoproterozoic Era. The assembly of the supercontinent was likely completed during global-scale collisional events from 2100 to 1800 million years ago.

Arctica or Arctida was an ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.

<span class="mw-page-title-main">Pannotia</span> Hypothesized Neoproterozoic supercontinent from the end of the Precambrian

Pannotia, also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontinent that formed at the end of the Precambrian during the Pan-African orogeny, during the Cryogenian period and broke apart 560 Ma with the opening of the Iapetus Ocean, in the late Ediacaran and early Cambrian. Pannotia formed when Laurentia was located adjacent to the two major South American cratons, Amazonia and Río de la Plata. The opening of the Iapetus Ocean separated Laurentia from Baltica, Amazonia, and Río de la Plata. In 2022 the whole concept of Pannotia has been put into question by scientists who argue its existence is not supported by geochronology, "the supposed landmass had begun to break up well before it was fully assembled".

<span class="mw-page-title-main">Baltica</span> Late-Proterozoic to early-Palaeozoic continent

Baltica is a paleocontinent that formed in the Paleoproterozoic and now constitutes northwestern Eurasia, or Europe north of the Trans-European Suture Zone and west of the Ural Mountains. The thick core of Baltica, the East European Craton, is more than three billion years old and formed part of the Rodinia supercontinent at c.Ga.

The Pan-African orogeny was a series of major Neoproterozoic orogenic events which related to the formation of the supercontinents Gondwana and Pannotia about 600 million years ago. This orogeny is also known as the Pan-Gondwanan or Saldanian Orogeny. The Pan-African orogeny and the Grenville orogeny are the largest known systems of orogenies on Earth. The sum of the continental crust formed in the Pan-African orogeny and the Grenville orogeny makes the Neoproterozoic the period of Earth's history that has produced most continental crust.

<span class="mw-page-title-main">Kalahari Craton</span> African geological area

The Kalahari Craton is a craton, an old and stable part of the continental lithosphere, that occupies large portions of South Africa, Botswana, Namibia and Zimbabwe. It consists of two cratons separated by the Limpopo Belt: the larger Kaapvaal Craton to the south and the smaller Zimbabwe Craton to the north. The Namaqua Belt is the southern margin of the Kaapvaal Craton.

<span class="mw-page-title-main">Amazonian Craton</span> Geologic province in South America

The Amazonian Craton is a geologic province located in South America. It occupies a large portion of the central, north and eastern part of the continent and represents one of Earth's largest cratonic regions. The Guiana Shield and Central Brazil Shield constitute respectively the northern and southern exhumed parts of the craton. Between the two shields lies the Amazon Rift, a zone of weakness within the craton. Smaller cratons of Precambrian rocks south of the Amazonian Shield are the Río de la Plata Craton and the São Francisco Craton, which lies to the east.

<span class="mw-page-title-main">Río de la Plata Craton</span> Medium-sized continental block in Uruguay, eastern Argentina and southern Brazil

The Rio de la Plata Craton (RPC) is a medium-sized continental block found in Uruguay, eastern Argentina and southern Brazil. During its complex and protracted history it interacted with a series other blocks and is therefore considered important for the understanding of the amalgamation of West Gondwana. Two orogenic cycles have been identified in the RPC: a 2000 Ma-old western domain representing the old craton and a 700–500 Ma-old eastern domain assigned to the Brasiliano Cycle. It is one of the five cratons of the South American continent. The other four cratons are: Amazonia, São Francisco, Río Apa and Arequipa–Antofalla.

<span class="mw-page-title-main">Ur (continent)</span> Hypothetical archaean supercontinent from about 3.1 billion years ago

Ur is a hypothetical supercontinent that formed in the Archean 3,100 million years ago.

<span class="mw-page-title-main">East African Orogeny</span> Main stage in the Neoproterozoic assembly of East and West Gondwana

The East African Orogeny (EAO) is the main stage in the Neoproterozoic assembly of East and West Gondwana along the Mozambique Belt.

The Kibaran orogeny is a term that has been used for a series of orogenic events, in what is now Africa, that began in the Mesoproterozoic, around 1400 Ma and continued until around 1000 Ma when the supercontinent Rodinia was assembled. The term "Kibaran" has often been used for any orogenic rocks formed during this very extended period. Recently, it has been proposed that the term should be used in a much narrower sense for an event around 1375 Ma and a region in the southeast of the Democratic Republic of the Congo (DRC).

<span class="mw-page-title-main">East Antarctic Shield</span> Cratonic rock body which makes up most of the continent Antarctica

The East Antarctic Shield or Craton is a cratonic rock body that covers 10.2 million square kilometers or roughly 73% of the continent of Antarctica. The shield is almost entirely buried by the East Antarctic Ice Sheet that has an average thickness of 2200 meters but reaches up to 4700 meters in some locations. East Antarctica is separated from West Antarctica by the 100–300 kilometer wide Transantarctic Mountains, which span nearly 3,500 kilometers from the Weddell Sea to the Ross Sea. The East Antarctic Shield is then divided into an extensive central craton that occupies most of the continental interior and various other marginal cratons that are exposed along the coast.

<span class="mw-page-title-main">Tectonic evolution of the Aravalli Mountains</span> Overview article

The Aravalli Mountain Range is a northeast-southwest trending orogenic belt in the northwest part of India and is part of the Indian Shield that was formed from a series of cratonic collisions. The Aravalli Mountains consist of the Aravalli and Delhi fold belts, and are collectively known as the Aravalli-Delhi orogenic belt. The whole mountain range is about 700 km long. Unlike the much younger Himalayan section nearby, the Aravalli Mountains are believed much older and can be traced back to the Proterozoic Eon. They are arguably the oldest geological feature on Earth. The collision between the Bundelkhand craton and the Marwar craton is believed to be the primary mechanism for the development of the mountain range.

<span class="mw-page-title-main">Owambo Basin</span>

The Owambo Basin is a sedimentary basin located on the Congo Craton in Southern Africa that extends from southern Angola into Namibia and includes the Etosha Pan. It is bound on the southern and western sides by the Damara Belt in Northern Namibia, and by the Cubango River to the East. The northern boundary is scientifically disputed, but is currently mapped by most stratigraphers to include southern Angola with the boundary set at the Kunene River. The Owambo Basin is host to two famous regions: Tsumeb, a major Namibian city and site of a formerly active copper mine with exceptional mineralogical variability producing museum quality rare specimens, and Etosha National Park, the largest protected wildlife sanctuary in Namibia centered around Etosha Pan.

The geology of Central African Republic (CAR) is part of the broader geology of Africa. CAR occupies a swath of ancient rocks, dating back billions of years that record significant aspects of Earth history and yield minerals vital to the country's small economy.

<span class="mw-page-title-main">Picuris orogeny</span> Mountain-building event in what is now the Southwestern US

The Picuris orogeny was an orogenic event in what is now the Southwestern United States from 1.43 to 1.3 billion years ago in the Calymmian Period of the Mesoproterozoic. The event is named for the Picuris Mountains in northern New Mexico and interpreted either as the suturing of the Granite-Rhyolite crustal province to the southern margin of the proto-North American continent Laurentia or as the final suturing of the Mazatzal crustal province onto Laurentia. According to the former hypothesis, this was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

References

Notes

  1. Ernst et al. 2013 , Conclusions, p. 116
  2. Pedreira & De Waele 2008 , p. 33–34
  3. Ernst et al. 2013 , Abstract
  4. Pisarevsky et al. 2014 , Congo/ São Francisco and Siberia
  5. de Kock et al. 2014 , Other 1.1 Ga LIPs?, pp. 139–140
  6. De Waele, Johnson & Pisarevsky 2008 , Introduction, pp. 127–128
  7. Babinski et al. 2012 , Geotectonic setting, p. 452
  8. Tack et al. 2001 , Introduction, pp. 301–302

Sources