Zimbabwe Craton

Last updated
Southern Africa showing location of Zimbabwe Craton Southern African Cratons.svg
Southern Africa showing location of Zimbabwe Craton

The Zimbabwe Craton is an area in Southern Africa of ancient continental crust, being a part of the ancient continent of Western Gondwana, with rocks dating back to the early Archean Eon, possibly as early as 3.46 billion years ago (Ga.). [1] The craton is named after the country of Zimbabwe where the majority of the craton is. The rocks of the Zimbabwe Craton are separated from the rocks of the Kaapvaal Craton to the southeast by the 250 kilometres (160 mi) wide Limpopo Belt of granulite facies tectonites. The Limpopo belt formed contemporaneously with the Zimbabwe and Kaapvaal cratons, but remained geologically active until much later. It was only in the late Archean, ca. 2.8-2.5 Ga., that the two cratons were stabilized together and that high-grade metamorphism ceased in the Limpopo Belt. North of the Zimbabwe Craton is the Zambezi Belt. [2]

Origin

The Zimbabwe Craton formed from the suture of two smaller blocks, the Tokwe Segment to the south and the much smaller Rhodesdale Segment (aka Rhodesdale gneiss), to the north. The rocks of these segments have been dated to as early as 3.46 Ga. [1] The Tokwe Segment probably stabilized about 3.3 Ga., and there is evidence that the Rhodesdale Segment stabilized about the same time. [3] [4]

The synchroneity and extent of the Tokwe Segment is considered strong evidence supporting a predominantly intra-cratonic origin for the Late Archaean greenstone belts of Zimbabwe and refuting an arc accretion origin for the craton. [4]

Related Research Articles

<span class="mw-page-title-main">Kenorland</span> Hypothetical Neoarchaean supercontinent from about 2.8 billion years ago

Kenorland was one of the earliest known supercontinents on Earth. It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago by the accretion of Neoarchaean cratons and the formation of new continental crust. It comprised what later became Laurentia, Baltica, Western Australia and Kalaharia.

<span class="mw-page-title-main">Greenstone belt</span> Zone of variably metamorphosed rocks occurring in Archaean and Proterozoic cratons

Greenstone belts are zones of variably metamorphosed mafic to ultramafic volcanic sequences with associated sedimentary rocks that occur within Archaean and Proterozoic cratons between granite and gneiss bodies.

<span class="mw-page-title-main">Paleoarchean</span> Second era of the Archean Eon

The Paleoarchean, also spelled Palaeoarchaean, is a geologic era within the Archean Eon. The name derives from Greek "Palaios" ancient. It spans the period of time 3,600 to 3,200 million years ago. The era is defined chronometrically and is not referenced to a specific level of a rock section on Earth. The earliest confirmed evidence of life comes from this era, and Vaalbara, one of Earth's earliest supercontinents, may have formed during this era.

<span class="mw-page-title-main">Yilgarn Craton</span> Large craton in Western Australia

The Yilgarn Craton is a large craton that constitutes the bulk of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have been dated at ~4.27 Ga, with one detrital zircon dated as old as 4.4 Ga.

<span class="mw-page-title-main">Vaalbara</span> Archaean supercontinent from about 3.6 to 2.7 billion years ago

Vaalbara was an Archean supercontinent consisting of the Kaapvaal Craton and the Pilbara Craton. E. S. Cheney derived the name from the last four letters of each craton's name. The two cratons consist of crust dating from 2.7 to 3.6 Gya, which would make Vaalbara one of Earth's earliest supercontinents.

<span class="mw-page-title-main">Slave Craton</span> Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut

The Slave Craton is an Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut. The Slave Craton includes the 4.03 Ga-old Acasta Gneiss which is one of the oldest dated rocks on Earth. Covering about 300,000 km2 (120,000 sq mi), it is a relatively small but well-exposed craton dominated by ~2.73–2.63 Ga greenstones and turbidite sequences and ~2.72–2.58 Ga plutonic rocks, with large parts of the craton underlain by older gneiss and granitoid units. The Slave Craton is one of the blocks that compose the Precambrian core of North America, also known as the palaeocontinent Laurentia.

<span class="mw-page-title-main">Kaapvaal Craton</span> Archaean craton, possibly part of the Vaalbara supercontinent

The Kaapvaal Craton, along with the Pilbara Craton of Western Australia, are the only remaining areas of pristine 3.6–2.5 Ga crust on Earth. Similarities of rock records from both these cratons, especially of the overlying late Archean sequences, suggest that they were once part of the Vaalbara supercontinent.

<span class="mw-page-title-main">Pilbara Craton</span> Old and stable part of the continental lithosphere located in Pilbara, Western Australia

The Pilbara Craton is an old and stable part of the continental lithosphere located in the Pilbara region of Western Australia.

<span class="mw-page-title-main">Barberton Greenstone Belt</span> Ancient granite-greenstone terrane in South Africa

The Barberton Greenstone Belt is situated on the eastern edge of Kaapvaal Craton in South Africa. It is known for its gold mineralisation and for its komatiites, an unusual type of ultramafic volcanic rock named after the Komati River that flows through the belt. Some of the oldest exposed rocks on Earth are located in the Barberton Greenstone Belt of the Eswatini–Barberton areas and these contain some of the oldest traces of life on Earth, second only to the Isua Greenstone Belt of Western Greenland. The Makhonjwa Mountains make up 40% of the Baberton belt. It is named after the town Barberton, Mpumalanga.

<span class="mw-page-title-main">Limpopo Belt</span>

The Limpopo Belt is located in South Africa and Zimbabwe, runs E-NE, and joins the Kaapvaal Craton to the south with the Zimbabwe Craton to the north. The belt is of high-grade metamorphic rocks that have undergone a long cycle of metamorphism and deformation that ended 2.0 billion years ago, after the stabilisation of the adjacent massifs. The belt comprises 3 components: the Central Zone, the North Marginal Zone and the South Marginal Zone.

<span class="mw-page-title-main">Kalahari Craton</span> African geological area

The Kalahari Craton is a craton, an old and stable part of the continental lithosphere, that occupies large portions of South Africa, Botswana, Namibia and Zimbabwe. It consists of two cratons separated by the Limpopo Belt: the larger Kaapvaal Craton to the south and the smaller Zimbabwe Craton to the north. The Namaqua Belt is the southern margin of the Kaapvaal Craton.

<span class="mw-page-title-main">Ur (continent)</span> Proposed archaean supercontinent from about 3.1 billion years ago

Ur is a hypothetical supercontinent that formed in the Archean 3,100 million years ago.

This timeline of natural history summarizes significant geological and biological events from the formation of the Earth to the arrival of modern humans. Times are listed in millions of years, or megaanni (Ma).

<span class="mw-page-title-main">Geology of Zimbabwe</span>

The geology of Zimbabwe in southern Africa is centered on the Zimbabwe Craton, a core of Archean basement composed in the main of granitoids, schist and gneisses. It also incorporates greenstone belts comprising mafic, ultramafic and felsic volcanics which are associated with epiclastic sediments and iron formations. The craton is overlain in the north, northwest and east by Proterozoic and Phanerozoic sedimentary basins whilst to the northwest are the rocks of the Magondi Supergroup. Northwards is the Zambezi Belt and to the east the Mozambique Belt. South of the Zimbabwe Craton is the Kaapvaal Craton separated from it by the Limpopo Mobile Belt, a zone of deformation and metamorphism reflecting geological events from Archean to Mesoproterozoic times. The Zimbabwe Craton is intruded by an elongate ultramafic/mafic igneous complex known as the Great Dyke which runs for more than 500 km along a SSW/NNE oriented graben. It consists of peridotites, pyroxenites, norites and bands of chromitite.

<span class="mw-page-title-main">Tectonic evolution of the Barberton greenstone belt</span> Evolutionary history of ancient continental crust remnant located in southeastern Africa

The Barberton greenstone belt (BGB) is located in the Kapvaal craton of southeastern Africa. It characterizes one of the most well-preserved and oldest pieces of continental crust today by containing rocks in the Barberton Granite Greenstone Terrain (3.55–3.22 Ga). The BGB is a small, cusp-shaped succession of volcanic and sedimentary rocks, surrounded on all sides by granitoid plutons which range in age from >3547 to <3225 Ma. It is commonly known as the type locality of the ultramafic, extrusive volcanic rock, the komatiite. Greenstone belts are geologic regions generally composed of mafic to ultramafic volcanic sequences that have undergone metamorphism. These belts are associated with sedimentary rocks that occur within Archean and Proterozoic cratons between granitic bodies. Their name is derived from the green hue that comes from the metamorphic minerals associated with the mafic rocks. These regions are theorized to have formed at ancient oceanic spreading centers and island arcs. In simple terms, greenstone belts are described as metamorphosed volcanic belts. Being one of the few most well-preserved Archean portions of the crust, with Archean felsic volcanic rocks, the BGB is well studied. It provides present geologic evidence of Earth during the Archean (pre-3.0 Ga). Despite the BGB being a well studied area, its tectonic evolution has been the cause of much debate.

<span class="mw-page-title-main">Eastern Pilbara Craton</span> Carton in Western Australia

The Eastern Pilbara Craton is the eastern portion of the Pilbara Craton located in Western Australia. This region contains variably metamorphosed mafic and ultramafic greenstone belt rocks, intrusive granitic dome structures, and volcanic sedimentary rocks. These greenstone belts worldwide are thought to be the remnants of ancient volcanic belts, and are subject to much debate in today's scientific community. Areas such as Isua and Barberton which have similar lithologies and ages as Pilbara have been argued to be subduction accretion arcs, while others suggest that they are the result of vertical tectonics. This debate is crucial to investigating when/how plate tectonics began on Earth. The Pilbara Craton along with the Kaapvaal Craton are the only remaining areas of the Earth with pristine 3.6–2.5 Ga crust. The extremely old and rare nature of this crustal region makes it a valuable resource in the understanding of the evolution of the Archean Earth.

<span class="mw-page-title-main">Archean felsic volcanic rocks</span> Felsic volcanic rocks formed in the Archean Eon

Archean felsic volcanic rocks are felsic volcanic rocks that were formed in the Archean Eon. The term "felsic" means that the rocks have silica content of 62–78%. Given that the Earth formed at ~4.5 billion year ago, Archean felsic volcanic rocks provide clues on the Earth's first volcanic activities on the Earth's surface started 500 million years after the Earth's formation.

The Superior Craton is a stable crustal block covering Quebec, Ontario, and southeast Manitoba in Canada, and northern Minnesota in the United States. It is the biggest craton among those formed during the Archean period. A craton is a large part of the Earth's crust that has been stable and subjected to very little geological changes over a long time. The size of Superior Craton is about 1,572,000 km2. The craton underwent a series of events from 4.3 to 2.57 Ga. These events included the growth, drifting and deformation of both oceanic and continental crusts.

<span class="mw-page-title-main">Moodies Group</span> Geological formation in South Africa and Eswatini

The Moodies Group is a geological formation in South Africa and Eswatini. It has the oldest well-preserved siliciclastic tidal deposits on Earth, where microbial mats flourished.

<span class="mw-page-title-main">Dharwar Craton</span> Part of the Indian Shield in south India

The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered as the oldest part of the Indian peninsula.

References

  1. 1 2 Wilson, J. F.; Nesbitt, R. W. & Fanning, C. M. (1995). "Zircon geochronology of Archaean felsic sequences in the Zimbabwe Craton: a revision of greenstone stratigraphy and a model for crustal growth". In Coward, M. P. & Ries, A. C. (eds.). Early Precambrian processes . Geological Society Special Publications, issue 95. London: Geological Society of London. pp.  109–126. ISBN   978-1-897799-36-9.
  2. Jelsma, H. A. and Dirks, P. H. G. M. (2002). "Neoarchean Tectonic Evolution of the Zimbabwe Craton". In Fowler, C. M. R.; Ebinger, C. L.; Hawkesworth, C. J. (eds.). The Early Earth: Physical, Chemical and Biological Development. Geological Society Special Publications, issue 199. London: Geological Society of London. pp. 183–211. ISBN   978-1-86239-109-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Dirks, P. H. G. M. and Jesma, H. A. (2002). "Crust–mantle decoupling and the growth of the Archaean Zimbabwe Craton". Journal of African Earth Sciences . 34 (3–4): 157–166. Bibcode:2002JAfES..34..157D. doi:10.1016/s0899-5362(02)00015-5.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. 1 2 Blenkinsop, T. G.; Martin, A.; Jelsma, H. A. & Vinyu, M. L. (1997). "The Zimbabwe Craton". In de Wit, M. J. & Ashwal, L. D. (eds.). Greenstone Belts. Oxford, England: Clarendon Press. pp. 567–580. ISBN   978-0-19-854056-4.