Gulf of Suez Rift

Last updated
Satellite image of the Gulf of Suez, dark outcrops of the Precambrian Arabian-Nubian Shield and linear rift structures are clearly visible on both sides of the gulf GOS WWsat.PNG
Satellite image of the Gulf of Suez, dark outcrops of the Precambrian Arabian-Nubian Shield and linear rift structures are clearly visible on both sides of the gulf

The Gulf of Suez Rift is a continental rift zone that was active between the Late Oligocene (c. 28 Ma) and the end of the Miocene (c. 5 Ma). [1] It represented a continuation of the Red Sea Rift until break-up occurred in the middle Miocene, with most of the displacement on the newly developed Red Sea spreading centre being accommodated by the Dead Sea Transform. During its brief post-rift history, the deepest part of the remnant rift topography has been filled by the sea, creating the Gulf of Suez.

Contents

North of the Gulf of Suez the rift becomes indistinct and its exact geometry uncertain, linking eventually to the Manzala rift beneath the Nile delta. [2]

Plate tectonic setting

The formation of the Red Sea – Gulf of Suez rift system was caused by the anticlockwise rotation of the Arabian plate with respect to the African plate. [1] This model is consistent with near orthogonal rifting along the entire length of the rift system. Alternative models that suggest initiation by strike-slip faulting and pull-apart basin development along the axis of the rift have not been supported by detailed studies of the rift geometry. [3]

Towards the end of the Miocene, the Arabian plate began to collide with the Eurasian plate leading to changes in the plate configuration, the development of the Dead Sea Transform and cessation in rifting in the Gulf of Suez. [3]

Stratigraphy

Stratigraphy of the Gulf of Suez rift GOSRift Strat.png
Stratigraphy of the Gulf of Suez rift

Basement

The basement consists of Precambrian rocks of the Arabian-Nubian Shield. [3] Gneisses, volcanics and metasediments are intruded by granites, granodiorites and a suite of dolerite dykes. These rocks contain shear zones, such as the Rehba Shear Zone of western Sinai, that are interpreted to have partly controlled the orientation and location of rift structures. [3] [4]

Palaeozoic

Cambrian rocks of Araba and Naqus Formations occur throughout the region above a planar unconformity, a result of peneplaination. These red and white sandstone units have a combined thickness of about 500 m. They were deposited in a continental environment except in the northeastern part of the gulf where they become marine. [3] The next preserved sequence is the Umm Bogma or Abu Durba Formations of lower Carboniferous age, which sit apparently conformably on the Cambrian, although the base represents a hiatus of about 150 Ma. The Umm Bogma Formation is dolomitic, while the stratigraphically equivalent Abur Durba Formation consists of black shales and mudstones. These sequences then pass up into the sandstones of the Abu Thora Formation. In the northern Gulf, at Wadi Araba, the early Carboniferous is overlain by upper Carboniferous of the Rod e Hamal, Abu Darag and Ahmeir Formations. [5] In the southern Gulf the Carboniferous strata are capped by Permian volcanics.

Mesozoic

The Qiseib Formation is found throughout the Gulf varying in thickness between 8 m and 300 m. It is thought to be mainly Triassic in age, although it is considered to include Permian strata near its base near Wadi Araba. [5] The Qiseib Formation consists of sandstones, conglomeratic at the base with an overall fining upward trend.

The Qiseib Formation is overlain by the sandstones of the Malha Formation of upper Jurassic to lower Cretaceous age. These sandstones are up to 400 m in thickness, form an important reservoir in the Gulf of Suez and are known informally as the 'Nubian' sandstone.

The upper Cretaceous sequence consists of shallow marine deposits that generally thicken northwards. The Cenomanian Raha Formation, a sequence of interbedded shales limestones and sandstone, is succeeded by limestones of the Turonian Wata Formation. This is overlain by sandstones and shales of the Coniacian-Santonian age Matullah Formation. The central and northern parts of the gulf were locally affected by a phase of inversion at the end of the Santonian. Structures such as Wadi Araba became uplifted at this time giving rise to folding and local erosion of pre-Campanian strata. [6] The Campanian Duwi Formation, known as the Brown Limestone, was deposited throughout the gulf apart from the uplifted area of the North Galala plateau and Wadi Araba where it is replaced by chalk of the Thelmet Formation. These pass up into Sudr Formation chalks of Maastrichtian age. On the southern margin of the uplifted Wadi Araba, a carbonate ramp sequence was formed during the Campanian/Maastrichtian, continuing into the Paleogene. [7]

Cenozoic

Rocks of Paleocene age are represented by the Esna Shale Formation which overlies the Sudr Formation. This is succeeded by Eocene age limestones of either the Thebes or Waseiyit Formations. Together with the middle to late Eocene Mokattam Formation this sequence reaches a combined maximum thickness of 500 m. These limestones are followed by continental to locally shallow marine red sandstones of the Tayiba Formation, which represent the last of the pre-rift deposits. [3]

The continental sandstones and siltstones of the Abu Zenima Formation represent the earliest syn-rift deposits of late Oligocene (Chattian) to early Miocene (Aquitanian) age. Locally the Abu Zenima Formation is capped by basalts. The lower Miocene age conglomerates, sandstones and marls of the Nukhul Formation were deposited in shallow marine conditions as the sea began to flood the developing rift. The Nukhul Formation overlies the Abu Zenima Formation in some place but elsewhere is probably age equivalent, reflecting a diachronous change to marine conditions within the rift. [3]

The deepening of the rift is recorded by the lower Miocene Rudeis Formation. The lower part, consisting of marls and sandstones, is overlain by coarse sandstones and conglomerates reflecting a rapid increase in rift topography at that time. The Kareem Formation saw the first development of evaporites, indicating basin restriction, followed by open marine shales, as coarse clastic deposition began to reduce in the middle Miocene. Shales, anhydrite, halite and reefal limestones of the uppermost middle Miocene Belayim lie unconformably on the Kareem. More restricted basin conditions continued with the upper Miocene South Gharib and Zeit Formations with deposition of halite with some anhydrite and mudstone, representing the last syn-rift deposits. [3]

The Pliocene–Recent postrift sequence reaches up to 2000 m in thickness in the southern part of the rift and is formed of interbedded sandstones, limestones and evaporites. [3]

History

Generalised structural cross-section through the Gulf of Suez, just south of the Morgan Accommodation Zone. PZ-LK = Paleozoic to lower Cretaceous Nubia (reservoir rock); UK-EO = Upper Cretaceous to Eocene pre-rift carbonate (source rock); N, R, K, and B = syn- and post-rift Nukhul, Rudeis, Kareem and Belayim formation (sources, reservoirs, seals and overburden); SG = South Gharib salt (seal and overburden); Z=Zeit (seals and overburden); and PP = Plio-Pleistocene (overburden) Gulf of Suez Rift01.jpg
Generalised structural cross-section through the Gulf of Suez, just south of the Morgan Accommodation Zone. PZ-LK = Paleozoic to lower Cretaceous Nubia (reservoir rock); UK-EO = Upper Cretaceous to Eocene pre-rift carbonate (source rock); N, R, K, and B = syn- and post-rift Nukhul, Rudeis, Kareem and Belayim formation (sources, reservoirs, seals and overburden); SG = South Gharib salt (seal and overburden); Z=Zeit (seals and overburden); and PP = Plio-Pleistocene (overburden)

Pre-rift

During the Late Cretaceous to Eocene, the area now occupied by the rift was a shallow sea depositing carbonates. This period was mainly quiet tectonically but the northern part of the gulf region was affected by periodic far-field effects of the Alpine orogeny. A series of WSW-ENE trending extensional basins were inverted, creating isolated uplifted and folded areas known as Syrian Arc structures. These structures were mainly active during the Late Santonian but there is evidence of further movements on the same structures at the end of the Cretaceous and during the Paleogene. [6]

Rifting

Rifting began along the whole of the Red Sea -Gulf of Suez rift system during the Late Oligocene. In the Gulf of Suez rift, the rifting culminated during the Burdigalian stage (late Early Miocene, c. 18 Ma). In the Middle Miocene break-up occurred along the whole length of the Red Sea rift with seafloor spreading beginning in the Late Miocene. This break-up was associated with a gradual reduction in the rate of rifting along the Gulf of Suez with most activity stopping by the beginning of the Pliocene. [3]

Post-rift

Since the end of the Miocene the area of the Gulf of Suez rift has begun to experience post-rift thermal subsidence accompanied by flooding of the topographically lowest parts of the rift. [8]

Geometry

Structural map of the Gulf of Suez rift GulfofSuezRift.png
Structural map of the Gulf of Suez rift

The Gulf of Suez rift is strongly segmented along its length with half-grabens of alternating polarity. The changes in fault polarity and position from segment to segment are taken up by broad accommodation zones. [4]

Zaafarana accommodation zone

This zone, also known as the Galala-Abu Zenima Accommodation Zone, marks a change in fault polarity from NE-dipping in the Darag Basin to the north to SE-dipping to the south in the Belayim province. It coincides with the location of the Cretaceous inversion structure, the Wadi Araba anticline. It has been suggested that the presence of this structure acted as a barrier to northward propagation of the rift. Its location may also be partly controlled by the Rehba Shear Zone in the underlying basement. [4]

Morgan accommodation zone

The Morgan accommodation zone marks a switch in fault polarity from NE-dipping to the north to SW-dipping to the south in the Amal-Zeit province. It also coincides with a marked southward widening of the rift zone. There is no earlier structure known that influenced the location of this accommodation zone. [4]

Economic importance

More than 120 hydrocarbon fields and discoveries have been reported from the Gulf of Suez rift with a variety of petroleum plays.

Source rocks

The main source rock in the Gulf of Suez is the Campanian age Brown Limestone or Duwi Member of the Sudr Formation. This unit is typically 25–70 m thick and is distributed from the southern end of the gulf as far north as Wadi Araba. It contains mainly type II kerogen and has an average Total organic carbon content (TOC) of 2.6 wt% with some samples measuring up to 21 wt%. [9] In the southern part of the gulf, the Miocene source intervals become important as higher geothermal gradients cause parts of the syn-rift sequence to reach maturity. Marine shale of the middle Miocene Magna Formation is the most important of these younger source rocks with a TOC ranging from 1–2 wt %.

Reservoir rocks

The best quality reservoir in the Gulf of Suez is the mainly Lower Cretaceous Malha Formation, sometimes known as the 'Nubia' or 'Nubian A'. This pre-rift sequence is present throughout the gulf, and has porosities in the range 13–29% with permeabilities varying from 70 to 400 md. [10]

Main plays

The dominant play type in the Gulf of Suez is tilted fault blocks with pre-rift Early Cretaceous sands sealed by syn-rift sequences and source from the Duwi limestone. Additional discoveries have been made in a wide range of structural, stratigraphic and combined play types. [10]

Importance as a rift basin analogue

The Gulf of Suez rift has been intensively studied by academic groups and by companies as analogue for rift basins in general. This is due to the generally good exposure within the onshore part of the rift coupled with the availability of hydrocarbon exploration wells and seismic reflection datasets within the gulf itself. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Gulf of Suez</span> Gulf of the Red Sea separating African Egypt from the Sinai Peninsula

The Gulf of Suez is a gulf at the northern end of the Red Sea, to the west of the Sinai Peninsula. Situated to the east of the Sinai Peninsula is the smaller Gulf of Aqaba. The gulf was formed within a relatively young but now inactive Gulf of Suez Rift rift basin, dating back about 26 million years. It stretches some 300 kilometres (190 mi) north by northwest, terminating at the Egyptian city of Suez and the entrance to the Suez Canal. Along the mid-line of the gulf is the boundary between Africa and Asia. The entrance of the gulf lies atop the mature Gemsa oil and gas field. The gulf is considered one of the world's important maritime zones due to being an entrance to the Suez Canal.

<span class="mw-page-title-main">San Juan Basin</span> Structural basin in the Southwestern United States

The San Juan Basin is a geologic structural basin located near the Four Corners region of the Southwestern United States. The basin covers 7,500 square miles and resides in northwestern New Mexico, southwestern Colorado, and parts of Utah and Arizona. Specifically, the basin occupies space in the San Juan, Rio Arriba, Sandoval, and McKinley counties in New Mexico, and La Plata and Archuleta counties in Colorado. The basin extends roughly 100 miles (160 km) N-S and 90 miles (140 km) E-W.

<span class="mw-page-title-main">Geology of the Iberian Peninsula</span> Geology of Spain, Portugal, Andorra, and Gibraltar

The geology of the Iberian Peninsula consists of the study of the rock formations on the Iberian Peninsula, connected to the rest of the European landmass by the Pyrenees. The peninsula contains rocks from every geological period from the Ediacaran to the Quaternary, and many types of rock are represented. World-class mineral deposits are also found there.

The Aquitaine Basin is the second largest Mesozoic and Cenozoic sedimentary basin in France after the Paris Basin, occupying a large part of the country's southwestern quadrant. Its surface area covers 66,000 km2 onshore. It formed on Variscan basement which was peneplained during the Permian and then started subsiding in the early Triassic. The basement is covered in the Parentis Basin and in the Subpyrenean Basin—both sub-basins of the main Aquitaine Basin—by 11,000 m of sediment.

<span class="mw-page-title-main">Geology of the Pyrenees</span> European regional geology

The Pyrenees are a 430-kilometre-long, roughly east–west striking, intracontinental mountain chain that divide France, Spain, and Andorra. The belt has an extended, polycyclic geological evolution dating back to the Precambrian. The chain's present configuration is due to the collision between the microcontinent Iberia and the southwestern promontory of the European Plate. The two continents were approaching each other since the onset of the Upper Cretaceous (Albian/Cenomanian) about 100 million years ago and were consequently colliding during the Paleogene (Eocene/Oligocene) 55 to 25 million years ago. After its uplift, the chain experienced intense erosion and isostatic readjustments. A cross-section through the chain shows an asymmetric flower-like structure with steeper dips on the French side. The Pyrenees are not solely the result of compressional forces, but also show an important sinistral shearing.

The Zonguldak basin of northwestern Turkey is the only basin in Turkey with mineable coal deposits. It has been mined for coal since the late 1800s. The basin takes its name after Zonguldak, Turkey, and lies at approximately 41° N. It is roughly elliptical in shape with its long axis oriented roughly southwest to northeast, and is adjacent to the Black Sea. Three main regions have been recognized in the Zonguldak basin: from west to east, Armutcuk, Zonguldak, and Amasra.

<span class="mw-page-title-main">Offshore Indus Basin</span> Basin in offshore Pakistan

The offshore Indus Basin is one of the two basins in offshore Pakistan, the other one being the offshore Makran Basin. The Murray Ridge separates the two basins. The offshore Indus basin is approximately 120 to 140 kilometers wide and has an areal extent of ~20,000 square km.

One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils. Moreover, it consists of many varied lithofacies, making correlation work more difficult. This article describes the major formations of the Paleozoic – Mesozoic Lesser Himalayan Strata, including the Tal Formation, Gondwana Strata, Singtali Formation and Subathu Formation.

The geology of Somalia is built on more than 700 million year old igneous and metamorphic crystalline basement rock, which outcrops at some places in northern Somalia. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate. The geology of Somaliland, the de facto independent country recognized as part of Somalia, is to some degree better studied than that of Somalia as a whole. Instability related to the Somali Civil War and previous political upheaval has limited geologic research in places while heightening the importance of groundwater resources for vulnerable populations.

<span class="mw-page-title-main">Geology of Somaliland</span>

The geology of Somaliland is very closely related to the geology of Somalia. Somaliland is a de facto independent country within the boundaries that the international community recognizes as Somalia. Because it encompasses the former territory of British Somaliland, the region is historically better researched than former Italian Somaliland. Somaliland is built on more than 700 million year old igneous and metamorphic crystalline basement rock.. These ancient units are covered in thick layers of sedimentary rock formed in the last 200 million years and influenced by the rifting apart of the Somali Plate and the Arabian Plate.

<span class="mw-page-title-main">Geology of Bosnia and Herzegovina</span>

The geology of Bosnia & Herzegovina is the study of rocks, minerals, water, landforms and geologic history in the country. The oldest rocks exposed at or near the surface date to the Paleozoic and the Precambrian geologic history of the region remains poorly understood. Complex assemblages of flysch, ophiolite, mélange and igneous plutons together with thick sedimentary units are a defining characteristic of the Dinaric Alps, also known as the Dinaride Mountains, which dominate much of the country's landscape.

The geology of Mississippi includes some deep igneous and metamorphic crystalline basement rocks from the Precambrian known only from boreholes in the north, as well as sedimentary sequences from the Paleozoic. The region long experienced shallow marine conditions during the tectonic evolutions of the Mesozoic and Cenozoic, as coastal plain sediments accumulated up to 45,000 feet thick, including limestone, dolomite, marl, anhydrite and sandstone layers, with some oil and gas occurrences and the remnants of Cretaceous volcanic activity in some locations.

<span class="mw-page-title-main">Geology of Wyoming</span>

The geology of Wyoming includes some of the oldest Archean rocks in North America, overlain by thick marine and terrestrial sediments formed during the Paleozoic, Mesozoic and Cenozoic, including oil, gas and coal deposits. Throughout its geologic history, Wyoming has been uplifted several times during the formation of the Rocky Mountains, which produced complicated faulting that traps hydrocarbons.

<span class="mw-page-title-main">Geology of North Dakota</span>

The geology of North Dakota includes thick sequences oil and coal bearing sedimentary rocks formed in shallow seas in the Paleozoic and Mesozoic, as well as terrestrial deposits from the Cenozoic on top of ancient Precambrian crystalline basement rocks. The state has extensive oil and gas, sand and gravel, coal, groundwater and other natural resources.

<span class="mw-page-title-main">Geology of Uzbekistan</span>

The geology of Uzbekistan consists of two microcontinents and the remnants of oceanic crust, which fused together into a tectonically complex but resource rich land mass during the Paleozoic, before becoming draped in thick, primarily marine sedimentary units.

The geology of Israel includes igneous and metamorphic crystalline basement rocks from the Precambrian overlain by a lengthy sequence of sedimentary rocks extending up to the Pleistocene and overlain with alluvium, sand dunes and playa deposits.

The geology of the United Arab Emirates includes very thick Paleozoic, Mesozoic and Cenozoic marine and continental sedimentary rocks overlying deeply buried Precambrian. The region has extensive oil and gas resources and was deformed during the last several million years by more distant tectonic events.

The geology of Jordan includes thick sedimentary sequences of sandstone, marl and evaporites atop ancient Precambrian crystalline igneous and metamorphic basement rock.

The geology of Saudi Arabia includes Precambrian igneous and metamorphic basement rocks, exposed across much of the country. Thick sedimentary sequences from the Phanerozoic dominate much of the country's surface and host oil.

The geology of Yukon includes sections of ancient Precambrian Proterozoic rock from the western edge of the proto-North American continent Laurentia, with several different island arc terranes added through the Paleozoic, Mesozoic and Cenozoic, driving volcanism, pluton formation and sedimentation.

References

  1. 1 2 Khalil, S.M.; McClay K.R. (2001). "Tectonic evolution of the NW Red Sea-Gulf of Suez rift system". In Wilson, R.C.L.; Whitmarsh, R.B.; Taylor, B.; Froitzheim, N. (eds.). Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea. Special Publication. Vol. 187. Geological Society of London. pp. 453–473. ISBN   978-1-86239-091-1.
  2. Bosworth, W.; Huchon, P.; McClay, K.R. (2005). "The Red Sea and Gulf of Aden Basins" (PDF). Journal of African Earth Sciences. 43 (1–3): 334–378. Bibcode:2005JAfES..43..334B. doi:10.1016/j.jafrearsci.2005.07.020. Archived from the original (PDF) on 2011-08-18. Retrieved 2010-04-27.
  3. 1 2 3 4 5 6 7 8 9 10 11 Bosworth, W.; McClay K.R. (2001). "18 Structural and stratigraphic evolution of the Gulf of Suez Rift, Egypt: a synthesis" (PDF). In Ziegler P.A.; Cavazza W.; Robertson A.H.F.; Crasquin-Soleau (eds.). Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mem. Mus. natn. Hist. nat. Vol. Peri-Tethys Memoir 6. Paris. pp. 567–606. Retrieved 2010-04-27.{{cite book}}: CS1 maint: location missing publisher (link)
  4. 1 2 3 4 Younes, A.I.; McClay K. (2002). "Development of Accommodation Zones in the Gulf of Suez-Red Sea Rift, Egypt". AAPG Bulletin. 86 (6): 1003–1026. doi:10.1306/61EEDC10-173E-11D7-8645000102C1865D.
  5. 1 2 Tawadros, Edward; Ezzat Tawadros (2 January 2000). Geology of Egypt and Libya. Taylor & Francis. p. 500. ISBN   978-90-5809-331-8 . Retrieved 15 May 2010.
  6. 1 2 Bosworth, W.; Guiraud, R.; Kessler II, L.G. (1999). "Late Cretaceous (c. 84 Ma) compressive deformation of the stable platform of northeast Africa (Egypt): Far-field stress effects of the "Santonian event" and origin of the Syrian arc deformation belt". Geology. 27 (7): 633–636. Bibcode:1999Geo....27..633B. doi:10.1130/0091-7613(1999)027<0633:LCCMCD>2.3.CO;2 . Retrieved 15 May 2010.
  7. Kuss, J.; Scheibner, C.; Gietl, R. (2000). "Carbonate Platform to Basin Transition along an Upper Cretaceous to Lower Tertiary Syrian Arc Uplift, Galala Plateaus, Eastern Desert of Egypt" (PDF). GeoArabia. 5 (3): 405–424. Bibcode:2000GeoAr...5..405K. doi:10.2113/geoarabia0503405. S2CID   128180958.
  8. Bosworth, W. (1995). "A high-strain rift model for the southern Gulf of Suez (Egypt)". Rift Structure: Models and Observations. Special Publications. Vol. 80. London: Geological Society. pp. 75–102. Retrieved May 31, 2010.
  9. "Source Rock". USGS Open File Report 99-50-A The Red Sea Basin Province: Sudr-Nubia(!) and Maqna(!) Petroleum Systems. 1999. Retrieved 7 May 2010.
  10. 1 2 Alsharhan, A.S. (2003). "Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt" (PDF). AAPG Bulletin. 87 (1). doi:10.1306/062002870143 (inactive 1 November 2024). Archived from the original (PDF) on 14 July 2011. Retrieved 17 May 2010.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)