Mesoproterozoic

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia
Mesoproterozoic
1600 – 1000 Ma
Banded fine-grained pyrite in shale (Urquhart Shale, Mesoproterozoic; Mt. Isa Mines, Queensland, Australia) (18940551220).jpg
Banded fine-grained pyrite found in the Urquhart Shale, Australia
Chronology
Proposed redefinition(s)1780–850 Ma
Gradstein et al., 2012
Proposed subdivisionsRodinian Period, 1780–850 Ma
Gradstein et al., 2012
Etymology
Name formalityFormal
Usage information
Celestial body Earth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unit Era
Stratigraphic unit Erathem
Time span formalityFormal
Lower boundary definitionDefined Chronometrically
Lower GSSA ratified1991 [1]
Upper boundary definitionDefined Chronometrically
Upper GSSA ratified1991 [1]

The Mesoproterozoic Era [4] is a geologic era that occurred from 1,600 to 1,000 million years ago. The Mesoproterozoic was the first era of Earth's history for which a fairly definitive geological record survives. Continents existed during the preceding era (the Paleoproterozoic), but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today, although their arrangement on the Earth's surface was different.

Contents

Major events and characteristics

The major events of this era are the breakup of the Columbia supercontinent, the formation of the Rodinia supercontinent, [5] and the evolution of sexual reproduction. [6]

This era is marked by the further development of continental plates and plate tectonics. The supercontinent of Columbia broke up between 1500 and 1350 million years ago, [5] and the fragments reassembled into the supercontinent of Rodinia around 1100 to 900 million years ago, on the time boundary between the Mesoproterozoic and the subsequent Neoproterozoic. [7] These tectonic events were accompanied by numerous orogenies (episodes of mountain building) that included the Kibaran orogeny in Africa; [8] the Late Ruker orogeny in Antarctica; [9] the Gothian [10] and Sveconorwegian orogenies in Europe; [11] and the Picuris and Grenville orogenies in North America. [12]

The era saw the development of sexual reproduction, which greatly increased the complexity of life to come and signified the start of development of true multicellular organisms. [6] [13] Though the biota of the era was once thought to be exclusively microbial, recent finds have shown multicellular life did exist during the Mesoproterozoic. [14] [6] This era was also the high point of the stromatolites before they declined in the Neoproterozoic. [15]

Subdivisions

The subdivisions of the Mesoproterozoic are arbitrary divisions based on time. They are not geostratigraphic or biostratigraphic units. The decision to base the Precambrian time scale on radiometric dating reflects the sparse nature of the fossil record, and Precambrian subdivisions of geologic time roughly reflect major tectonic cycles. It is possible that future revisions to the time scale will reflect more "natural" boundaries based on correlative geologic events. [16]

The Mesoproterozoic is presently divided into the Calymmian (1600 to 1400 Mya) and the Ectasian (1400 to 1200 Mya), and the Stenian (1200 to 1000 Mya). The Calymmian and Ectasian were characterized by stabilization and expansion of cratonic covers and the Stenian by formation of orogenic belts. [16]

The time period from 1780 Ma to 850 Ma, an unofficial period based on stratigraphy rather than chronometry, named the Rodinian, is described in the geological timescale review 2012 edited by Gradstein et al., [17] but as of February 2017, this has not yet been officially adopted by the International Union of Geological Sciences (IUGS).

See also

Related Research Articles

<span class="mw-page-title-main">Neoproterozoic</span> Third and last era of the Proterozoic Eon

The Neoproterozoic Era is the last of the three geologic eras of the Proterozoic eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era and succeeded by the Paleozoic era of the Phanerozoic eon, and is further subdivided into three periods, the Tonian, Cryogenian and Ediacaran.

The Precambrian is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinized name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.

Rodinia was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named "Pangaea I." It was renamed "Rodinia" by McMenamin & McMenamin 1990, who also were the first to produce a plate reconstruction and propose a temporal framework for the supercontinent.

<span class="mw-page-title-main">Proterozoic</span> Geologic eon, 2500–539 million years ago

The Proterozoic is the third of the four geologic eons of Earth's history, spanning the time interval from 2500 to 538.8 Mya, and is the longest eon of Earth's geologic time scale. It is preceded by the Archean and followed by the Phanerozoic, and is the most recent part of the Precambrian "supereon".

<span class="mw-page-title-main">Arctica</span> Ancient continent in the Neoarchean era

Arctica, or Arctida is a hypothetical ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.

<span class="mw-page-title-main">Congo Craton</span> Precambrian craton that with four others makes up the modern continent of Africa

The Congo Craton, covered by the Palaeozoic-to-recent Congo Basin, is an ancient Precambrian craton that with four others makes up the modern continent of Africa. These cratons were formed between about 3.6 and 2.0 billion years ago and have been tectonically stable since that time. All of these cratons are bounded by younger fold belts formed between 2.0 billion and 300 million years ago.

<span class="mw-page-title-main">Tonian</span> First period of the Neoproterozoic Era

The Tonian is the first geologic period of the Neoproterozoic Era. It lasted from 1000 to 720 Mya. Instead of being based on stratigraphy, these dates are defined by the ICS based on radiometric chronometry. The Tonian is preceded by the Stenian Period of the Mesoproterozoic Era and followed by the Cryogenian.

<span class="mw-page-title-main">Ectasian</span> Second period of the Mesoproterozoic Era

The Ectasian Period is the second geologic period in the Mesoproterozoic Era and lasted from 1400 Mya to 1200 Mya. Instead of being based on stratigraphy, these dates are defined chronometrically.

<span class="mw-page-title-main">Stenian</span> Third and last period of the Mesoproterozoic Era

The Stenian Period is the final geologic period in the Mesoproterozoic Era and lasted from 1200 Mya to 1000 Mya. Instead of being based on stratigraphy, these dates are defined chronometrically. The name derives from narrow polymetamorphic belts formed over this period. It is preceded by the Ectasian Period and followed by the Neoproterozoic era and the Tonian period.

<span class="mw-page-title-main">Amazonian Craton</span> Geologic province in South America

The Amazonian Craton is a geologic province located in South America. It occupies a large portion of the central, north and eastern part of the continent and represents one of Earth's largest cratonic regions. The Guiana Shield and Central Brazil Shield constitute respectively the northern and southern exhumed parts of the craton. Between the two shields lies the Amazon Rift, a zone of weakness within the craton. Smaller cratons of Precambrian rocks south of the Amazonian Shield are the Río de la Plata Craton and the São Francisco Craton, which lies to the east.

<span class="mw-page-title-main">Riphean (stage)</span>

The Riphean is a stage or age of the geologic timescale from 1,600 to 600 million years ago. The name Riphean is used in the Proterozoic stratigraphy of Russia and the Fennoscandian Shield in Finland. It was also used in a number of older international geologic timescales but, in the most recent timescales of the ICS, it is replaced by the Calymmian, Ectasian, Stenian, Tonian and Cryogenian periods of the Neoproterozoic and Mesoproterozoic eras.

<span class="mw-page-title-main">Laurentia</span> Craton forming the geological core of North America

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and the Hebridean Terrane in northwest Scotland. During other times in its past, Laurentia has been part of larger continents and supercontinents and consists of many smaller terranes assembled on a network of early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

The Kibaran orogeny is a term that has been used for a series of orogenic events, in what is now Africa, that began in the Mesoproterozoic, around 1400 Ma and continued until around 1000 Ma when the supercontinent Rodinia was assembled. The term "Kibaran" has often been used for any orogenic rocks formed during this very extended period. Recently, it has been proposed that the term should be used in a much narrower sense for an event around 1375 Ma and a region in the southeast of the Democratic Republic of the Congo (DRC).

<span class="mw-page-title-main">Sveconorwegian orogeny</span> Orogenic belt in southwestern Sweden and southern Norway

The Sveconorwegian orogeny was an orogenic system active 1140 to 960 million years ago and currently exposed as the Sveconorwegian orogenic belt in southwestern Sweden and southern Norway. In Norway the orogenic belt is exposed southeast of the front of the Caledonian nappe system and in nappe windows. The Sveconorwegian orogen is commonly grouped within the Grenvillian Mesoproterozoic orogens. Contrary to many other known orogenic belts the Sveconorwegian orogens eastern border does not have any known suture zone with ophiolites.

<span class="mw-page-title-main">South China Craton</span> Precambrian continental block located in China

The South China Craton or South China Block is one of the Precambrian continental blocks in China. It is traditionally divided into the Yangtze Block in the NW and the Cathaysia Block in the SE. The Jiangshan–Shaoxing Fault represents the suture boundary between the two sub-blocks. Recent study suggests that the South China Block possibly has one more sub-block which is named the Tolo Terrane. The oldest rocks in the South China Block occur within the Kongling Complex, which yields zircon U–Pb ages of 3.3–2.9 Ga.

<span class="mw-page-title-main">Mazatzal orogeny</span> Mountain-building event in North America

The Mazatzal orogeny was an orogenic event in what is now the Southwestern United States from 1650 to 1600 Mya in the Statherian Period of the Paleoproterozoic. Preserved in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1700-1600 Mya age Mazatzal island arc terrane with the proto-North American continent. This was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Yavapai orogeny</span> Mountain building event 1.7 billion years ago in the southwestern United States

The Yavapai orogeny was an orogenic (mountain-building) event in what is now the Southwestern United States that occurred between 1710 and 1680 million years ago (Mya), in the Statherian Period of the Paleoproterozoic. Recorded in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1800-1700 Mya age Yavapai island arc terrane with the proto-North American continent. This was the first in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Picuris orogeny</span> Mountain-building event in what is now the Southwestern US

The Picuris orogeny was an orogenic event in what is now the Southwestern United States from 1.43 to 1.3 billion years ago in the Calymmian Period of the Mesoproterozoic. The event is named for the Picuris Mountains in northern New Mexico and interpreted either as the suturing of the Granite-Rhyolite crustal province to the southern margin of the proto-North American continent Laurentia or as the final suturing of the Mazatzal crustal province onto Laurentia. According to the former hypothesis, this was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

The Renlandian Orogeny is a Tonian tectonic and metamorphic event that is found in East Greenland, on Svalbard, on Ellesmere Island and in Scotland. It takes its name from Renland in East Greenland, where the event was first recognised.

References

  1. 1 2 Plumb, K. A. (June 1, 1991). "New Precambrian time scale". Episodes. 14 (2): 139–140. doi: 10.18814/epiiugs/1991/v14i2/005 .
  2. "Meso". CollinsDictionary.com . HarperCollins . Retrieved 2023-08-30.
  3. "Proterozoic". Merriam-Webster.com Dictionary . Merriam-Webster.
  4. There are several ways of pronouncing Mesoproterozoic, including IPA: /ˌmɛzəˌprtərəˈzɪk,ˌmɛz-,ˌmɛs-,ˌmz-,ˌm.s-,-ˌprɒt-,-ər-,-trə-,-tr-/ MEZ-ə-PROH-tər-ə-ZOH-ik, MEZ-oh-, MESS-, MEE-z-, MEE-s-, -PROT-, -ər-oh-, -trə-, -troh-. [2] [3]
  5. 1 2 Zhao, G.; Sun, M.; Wilde, S. A.; Li, S. (2004). "A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup". Earth-Science Reviews. 67 (1): 91–123. Bibcode:2004ESRv...67...91Z. doi:10.1016/j.earscirev.2004.02.003 . Retrieved 14 February 2016.
  6. 1 2 3 Butterfield, Nicholas J. (2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes". Paleobiology . 26 (3): 386. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2. S2CID   36648568 . Retrieved 12 April 2021.
  7. Li, Z. X.; Bogdanova, S. V.; Collins, A. S.; Davidson, A.; De Waele, B.; Ernst, R. E.; Fitzsimons, I. C. W.; Fuck, R. A.; Gladkochub, D. P.; Jacobs, J.; Karlstrom, K. E.; Lul, S.; Natapov, L. M.; Pease, V.; Pisarevsky, S. A.; Thrane, K.; Vernikovsky, V. (2008). "Assembly, configuration, and break-up history of Rodinia: A synthesis" (PDF). Precambrian Research. 160 (1–2): 179–210. Bibcode:2008PreR..160..179L. doi:10.1016/j.precamres.2007.04.021 . Retrieved 6 February 2016.
  8. Tack, L.; Wingate, M.T.D.; De Waele, B.; Meert, J.; Belousova, E.; Griffin, B.; Tahon, A.; Fernandez-Alonso, M. (2008). "The 1375 Ma "Kibaran Event" in Central Africa: prominent emplacement of bimodal magmatism under extensional regime" (PDF). Precambrian Research . 180 (1–2): 63–84. doi:10.1016/j.precamres.2010.02.022 . Retrieved 2012-06-11.
  9. Anderson, John B. (1999). "Antarctic Marine Geology". Cambridge University Press. pp. 30–32. ISBN   9780521593175.
  10. Lundqvist, Jan; Lundqvist, Thomas; Lindström, Maurits; Calner, Mikael; Sivhed, Ulf (2011). "Sydvästskandinaviska provinsen". Sveriges Geologi: Från urtid till nutid (in Swedish) (3rd ed.). Spain: Studentlitteratur. ISBN   978-91-44-05847-4.
  11. Andesson, Jenny; Bingen, Bernard; Cornell, David; Johansson, Leif; Möller, Charlotte (2008). "The Sveconorwegian orogen of southern Scandinavia: setting, petrology and geochronology of polymetamorphic high-grade terranes". 33 IGC excursion No 51, August 2 – 5.
  12. Whitmeyer, Steven; Karlstrom, Karl E. (2007). "Tectonic model for the Proterozoic growth of North America". Geosphere. 3 (4): 220. doi: 10.1130/GES00055.1 .
  13. Bai, Shu-Nong (23 January 2015). "The concept of the sexual reproduction cycle and its evolutionary significance". Frontiers in Plant Science. 6: 11. doi: 10.3389/fpls.2015.00011 . PMC   4304253 . PMID   25667590.
  14. Troppenz, Uwe-Michael; Littkowski, Sven (3 May 2019). "The Mesoproterozoic – no "boring billion"" (PDF). Iranian Journal of Earth Sciences. 11 (4): 239–243. Retrieved 25 November 2022.
  15. Allwood, Abigail; Grotzinger; Knoll; Burch; Anderson; Coleman; Kanik (2009). "Controls on development and diversity of Early Archean stromatolites". Proceedings of the National Academy of Sciences. 106 (24): 9548–9555. Bibcode:2009PNAS..106.9548A. doi: 10.1073/pnas.0903323106 . PMC   2700989 . PMID   19515817.
  16. 1 2 Ogg, James (June 2004). "Status of Divisions of the International Geologic Time Scale". Lethaia. 37 (2): 183–199. doi:10.1080/00241160410006492.
  17. Gradstein, F.M.; et al., eds. (2012). The Geologic Time Scale 2012. Vol. 1. Elsevier. p. 361. ISBN   978-0-44-459390-0.