Grenville orogeny

Last updated
Extent (orange regions) of the Grenville orogeny, after Tollo et al. (2004) and Darabi (2004) Grenville extent.gif
Extent (orange regions) of the Grenville orogeny, after Tollo et al. (2004) and Darabi (2004)

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

Contents

Grenville orogenic crust of mid-late Mesoproterozoic age (c.1250980 Ma) is found worldwide, but generally only events which occurred on the southern and eastern margins of Laurentia are recognized under the "Grenville" name. [1] These orogenic events are also known as the Kibaran orogeny in Africa and the Dalslandian orogeny in Western Europe.

Timescale

The problem of timing the Grenville orogeny is an area of some contention. The timescale outlined by Toby Rivers in 2002 is derived from the well-preserved Grenville Province and represents one of the most detailed records of the orogeny. [2] This classification considers the classical Grenville designation to cover two separate orogenic cycles; the Rigolet, Ottawan and Shawingian orogenies compose the Grenville Cycle, and the Elzevirian orogeny stands on its own. Due to the great size of the area affected by Grenville events, there is some variance in timing across the orogenic belt. [1]

Timeline of the Grenville orogeny, after Rivers (2002) Grenville-Timeline.png
Timeline of the Grenville orogeny, after Rivers (2002)

Ages are approximated from the magmatic activity associated with the individual cycles of the orogeny. The gaps in the ages of the compression cycles and isotope analysis of hornblende, biotite, and potassium feldspar suggest that extension was occurring when compression had momentarily ceased. [3] [4]

Rivers' 2008 paper examines the timing of the different periods of the orogeny and reconstructs the timeline based on the spatial and temporal metamorphism of the rocks present. According to this newer version of the timeline which is a composite of Rivers 1997 and Gower and Krogh 2002, the Elzevirian orogeny occurs from 1240 to 1220 Ma, the Shawinigan occurs from 1190 to 1140 Ma and is no longer part of the Grenville cycle, the Ottawan (now 1090–1020 Ma) and Rigolet (still 1010–980 Ma) become phases which are grouped into the Grenvillian orogeny. [5]

General tectonics

Reconstruction of the events of the orogeny is ongoing, but the generally accepted view is that the eastern and southern margins of Laurentia were active convergent margins until the beginning of continental collision. This type of subduction (B-type) tends to emplace magmatic arcs on or near the edge of the overriding plate in modern subduction zones, and evidence of contemporary (c. 1300–1200 Ma) island arcs can be found throughout the Grenville orogen. The Andes of South America are considered a modern analogue. [1] From about c. 1190–980 Ma (the actual timing varies by locality) two separate continental blocks collided with Laurentia. Both of these collision events are thought to be analogous to the collision driving modern-day growth of the Himalaya range. [1] [6] For some time one of the blocks was believed to be the continent of Amazonia, but paleomagnetic evidence has now proven that this is not the case. [7]

These periods of thrusting and metamorphism were not continuous but were interrupted by comparatively quiet periods, during which AMCG (anorthosite / mangerite / charnockite / granite) plutons were intruded into the country rock. [1] Polarities of subduction (which plate overrode which) vary by region and time. Some island arc remnants were emplaced on the Laurentian margin, and some were accreted during orogeny. [8] [9] Timing of these events is constrained by cross-cutting relations observed in the field as well as SHRIMP (sensitive high-resolution ion microprobe) and TIMS (thermal ionization mass spectrometry) uranium-lead dating. [10]

The first period of tectonic activity was the accretion of an island arc at some point during the Elzevirian Orogeny. [7] Before the accretion of the island arc took place, subduction between a continental plate and presumably an oceanic plate was taking place. Slab pull and far-field drivers such as ridge push were aiding in closing the distance between the island arc and the continent. Depending on the angle of subduction, deformation of the continental crust was already taking place and thickening the lithosphere. By 1.19 Ga the Elzevir back arc basin was closing. [3]

From 1.18 to 1.14 Ga extension was occurring in the area. [3] Whether from lithospheric cooling, also known as thermal subsidence, or the compressional activity in the area reactivated some extensional faults. The extension is marked by the isotopic ages of the previously mentioned rocks. Additionally there is the formation of sedimentary basins which means the margin was quiescent enough that sediments could accumulate. However, in some areas from 1.16 to 1.13 Ga, coeval with extension, there is evidence there was still thrusting and emplacement of terranes occurring. [3]

According to one model, westward thrusting occurred from 1.12 to 1.09 Ga and then extension was the primary tectonic activity until 1.05 Ga. [3] It was at this point that the Central Granulite Terrane was exhumed and minor magmatism occurred. [7] The reason for change from compression to extension is unknown but may be the result of gravitational collapse, mantle delamination, the formation of a plume underneath a supercontinent, changes in far-field drivers on the distribution of stress, or any combination of reasons originating from the fact that our planet is dynamic. [7] The cyclic compression and extension history of this area is similar to the Wilson Cycle. In this area of the world the Wilson Cycle would be creating the basin for the Iapetus Ocean.

General lithology

Today, the Grenville orogen is marked by northwest verging fold-and-thrust belts and high pressure metamorphic regimes, as well as distinctive AMCG suite magmatism. Metamorphism is commonly of amphibolite and granulite facies, that is, medium to high temperature and pressure alteration. Eclogitized metagabbros (very high pressure ultramafic metamorphic rocks) are found in some localities and likely represent areas of deepest burial and/or most intense collision. [11] Throughout the orogen, these sequences of high pressure metamorphic rocks are cut by intrusive AMCG suite plutons, generally interpreted as syn- or post-tectonic. AMCG plutonism is generally associated with asthenospheric upwelling under thinned lithosphere. [1] [12] This is derived from the theory that AMCG plutonism is driven by ponding of olivine tholeiite basalt at the base of the continental crust during tectonic extension. [3] The lithosphere may be thinned either convectively or by delamination, in which the bottom portion of the lithosphere is stripped off. Both models have been proposed for the Grenville orogeny. [3]

The Grenville orogeny can be categorized into three sections based on structure, lithology, and thermochronology. The three sections, respectively called the Gneiss Belt, Metasedimentary Belt, and the Granulite terrane are all separated by shear zones. [4] [7] The Gneiss Belt is made up of felsic gneisses and amphibolites that were metamorphosed in the upper amphibolite to granulite facies. Thrusting in this section was low angle but would have the potential to increase and rotate as it continued and evolved. Shear in this area is referred to as ductile shear meaning the material was cooling and becoming solid, but still behaving viscously or plasticly. The age of this belt is approximately 1.8 to 1.18 Ga. Regional metamorphism is believed to have deformed this area at approximately 1.4 Ga and metamorphic thrusting at approximately 1.16 to 1.12 Ga. [4] [7]

The Metasedimentary Belt is predominantly sedimentary and volcanic rocks which have undergone greenschist to granulite facies metamorphism. Subdivisions of this belt include the Bancroft, Elzevir, Sharbot Lake, and Frontenac Domains and the Adirondack Lowlands. In this belt magmatism is known to have occurred between 1.42 and 1.04 Ga depending on location. As with the Gneiss Belt, metamorphism is believed to have occurred at approximately 1.16 Ga. [4] [7] The Granulite Terrane is composed of meta-igneous gneisses including anorthosite massifs. Anorthosites form in plutons and are composed mostly of plagioclase. The rocks of the Grenville Province in Canada are included in this category. The oldest magmatism known in this area dates to 1.32 Ga approximately. Granulite facies metamorphism began around 1.15 Ga and continued for about 150 Ma after the onset, however the continuity of the metamorphism cannot be determined. [4] [7]

Regional variations

It is important to separate local from large-scale tectonic history of the orogenic belt in order to understand the orogeny. For this purpose, the Grenville orogen is generally broken into four localities: the southern extent in Texas and Mexico, the Appalachians, the Adirondacks, and the Grenville Province. A portion of the orogen can be found in Scotland, but because of Scotland's proximity to the Grenville Province prior to opening of the Iapetus Ocean, the two share largely the same history. [1] [13]

Texas and Mexico

Texas and Mexico represent the southern margin of Laurentia and likely collided with a different continent than that involved in the eastern collision. [6] The Zapotecan orogeny of Mexico is coeval with the later stages of the Grenville orogeny, and they are generally considered to be one and the same. [14] Mesoproterozoic igneous protoliths (metamorphosed to granulite facies during the orogeny) fall into two age groups in Mexico; c. 1235–1115 Ma and c. 1035–1010 Ma. Rocks of the former group bear geochemical signatures implying island arc and back-arc basin provenance. The latter group represents AMCG magmatism. These AMCG rocks are somewhat anomalous throughout the Grenville orogen, there is no known orogenic event which immediately predates their emplacement. [14]

It is suggested that the regime of subduction under the Laurentian margin (currently in Texas, north of the accreted Mexican terrane) ended around 1230 Ma, and that subduction polarity reversed to bring the colliding continent north, since the Llano Uplift, which records the history of the Grenville in Texas, bears no evidence of arc magmatism after this time. [9]

Appalachians

The Appalachian Mountains contain small, isolated exposures of the Grenville orogen. The largest of these, the Long Range Inlier, comprises the Long Range Mountains of Newfoundland. Other exposures include the Shenandoah and French Broad massifs, which comprise the Blue Ridge province of Virginia. Blue Ridge rocks consist of various gneisses of upper amphibolite and granulite facies, intruded by charnockite and granitoid rocks. These igneous rocks were intruded in three intervals: c. 1160–1140  Ma, c. 1112 Ma, and c. 1080–1050 Ma, and are massive to weakly foliated in texture. [1]

Adirondacks

This region consists of a massive dome of Proterozoic rock on the New York-Canada border. Both the Elzevirian (c. 1250–1190 Ma) and Ottawan (c. 1080–1020 Ma) orogenic pulses are recorded in the Adirondacks, producing high-grade metamorphic rock. A northwest-trending high-strain shear zone separates the dome into the highlands to the southeast and the lowlands to the northwest. It is believed [7] [15] that the shear zone (the Carthage-Colton) was a transpressional boundary during the Ottawan, when the highlands were thrust over the lowlands. [1]

Grenville province

The Grenville province is named for Grenville, Quebec, and constitutes the youngest portion of the Canadian Shield. Since the area has not undergone any regional metamorphic overprinting since the orogeny, it is considered an ideal study area for Grenville and pre-Grenville age tectonics. Hence, most of what is known about the orogeny and its processes is derived from the Grenville Province. [1] The Laurentian Mountains are a part of the province.

See also

Related Research Articles

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

The Nevadan orogeny occurred along the western margin of North America during the Middle Jurassic to Early Cretaceous time which is approximately from 155 Ma to 145 Ma. Throughout the duration of this orogeny there were at least two different kinds of orogenic processes occurring. During the early stages of orogenesis an "Andean type" continental magmatic arc developed due to subduction of the Farallon oceanic plate beneath the North American Plate. The latter stages of orogenesis, in contrast, saw multiple oceanic arc terranes accreted onto the western margin of North America in a "Cordilleran type" accretionary orogen. Deformation related to the accretion of these volcanic arc terranes is mostly limited to the western regions of the resulting mountain ranges and is absent from the eastern regions. In addition, the deformation experienced in these mountain ranges is mostly due to the Nevadan orogeny and not other external events such as the more recent Sevier and Laramide Orogenies. It is noted that the Klamath Mountains and the Sierra Nevada share similar stratigraphy indicating that they were both formed by the Nevadan orogeny. In comparison with other orogenic events, it appears that the Nevadan Orogeny occurred rather quickly taking only about 10 million years as compared to hundreds of millions of years for other orogenies around the world.

The Hunter-Bowen Orogeny was a significant arc accretion event in the Permian and Triassic periods affecting approximately 2,500 km of the Australian continental margin.

<span class="mw-page-title-main">Trans-Hudson orogeny</span> Mountain-building event in North America

The Trans-Hudson orogeny or Trans-Hudsonian orogeny was the major mountain building event (orogeny) that formed the Precambrian Canadian Shield and the North American Craton, forging the initial North American continent. It gave rise to the Trans-Hudson orogen (THO), or Trans-Hudson Orogen Transect (THOT), which is the largest Paleoproterozoic orogenic belt in the world. It consists of a network of belts that were formed by Proterozoic crustal accretion and the collision of pre-existing Archean continents. The event occurred 2.0–1.8 billion years ago.

<span class="mw-page-title-main">Wyoming Craton</span> Craton in the west-central United States and western Canada

The Wyoming Craton is a craton in the west-central United States and western Canada – more specifically, in Montana, Wyoming, southern Alberta, southern Saskatchewan, and parts of northern Utah. Also called the Wyoming Province, it is the initial core of the continental crust of North America.

<span class="mw-page-title-main">Carolina terrane</span> Exotic terrane from central Georgia to central Virginia in the United States

The Carolina Terrane, also called the Carolina Superterrane or Carolinia, is an exotic terrane running ~370 miles (600 km) approximately North-South from central Georgia to central Virginia in the United States. It constitutes a major part of the eastern Piedmont Province.

<span class="mw-page-title-main">Moldanubian Zone</span> A tectonic zone in Europe formed during the Variscan or Hercynian Orogeny

The Moldanubian Zone is in the regional geology of Europe a tectonic zone formed during the Variscan or Hercynian Orogeny. The Moldanubian Zone crops out in the Bohemian Massif and the southern part of the Black Forest and Vosges and contains the highest grade metamorphic rocks of Variscan age in Europe.

<span class="mw-page-title-main">Tuareg Shield</span> Geological formation between the West African craton and the Saharan Metacraton in West Africa

The Tuareg Shield is a geological formation lying between the West African craton and the Saharan Metacraton in West Africa. Named after the Tuareg people, it has complex a geology, reflecting the collision between these cratons and later events. The landmass covers parts of Algeria, Niger and Mali.

<span class="mw-page-title-main">Geology of North America</span> Overview of the geology of North America

The geology of North America is a subject of regional geology and covers the North American continent, the third-largest in the world. Geologic units and processes are investigated on a large scale to reach a synthesized picture of the geological development of the continent.

<span class="mw-page-title-main">Sveconorwegian orogeny</span> Orogenic belt in southwestern Sweden and southern Norway

The Sveconorwegian orogeny was an orogenic system active 1140 to 960 million years ago and currently exposed as the Sveconorwegian orogenic belt in southwestern Sweden and southern Norway. In Norway the orogenic belt is exposed southeast of the front of the Caledonian nappe system and in nappe windows. The Sveconorwegian orogen is commonly grouped within the Grenvillian Mesoproterozoic orogens. Contrary to many other known orogenic belts the Sveconorwegian orogens eastern border does not have any known suture zone with ophiolites.

<span class="mw-page-title-main">Svecofennian orogeny</span> Geological process that resulted in formation of continental crust in Sweden, Finland and Russia

The Svecofennian orogeny is a series of related orogenies that resulted in the formation of much of the continental crust in what is today Sweden and Finland plus some minor parts of Russia. The orogenies lasted from about 2000 to 1800 million years ago during the Paleoproterozoic Era. The resulting orogen is known as the Svecofennian orogen or Svecofennides. To the west and southwest the Svecofennian orogen limits with the generally younger Transscandinavian Igneous Belt. It is assumed that the westernmost fringes of the Svecofennian orogen have been reworked by the Sveconorwegian orogeny just as the western parts of the Transscandinavian Igneous Belt has. The Svecofennian orogeny involved the accretion of numerous island arcs in such manner that the pre-existing craton grew with this new material from what is today northeast to the southwest. The accretion of the island arcs was also related to two other processes that occurred in the same period; the formation of magma that then cooled to form igneous rocks and the metamorphism of rocks.

<span class="mw-page-title-main">Famatinian orogeny</span> Paleozoic geological event in South America

The Famatinian orogeny is an orogeny that predates the rise of the Andes and that took place in what is now western South America during the Paleozoic, leading to the formation of the Famatinian orogen also known as the Famatinian belt. The Famatinian orogeny lasted from the Late Cambrian to at least the Late Devonian and possibly the Early Carboniferous, with orogenic activity peaking about 490 to 460 million years ago. The orogeny involved metamorphism and deformation in the crust and the eruption and intrusion of magma along a Famatinian magmatic arc that formed a chain of volcanoes. The igneous rocks of the Famatinian magmatic arc are of calc-alkaline character and include gabbros, tonalites, granodiorites and trondhjemites. The youngest igneous rocks of the arc are granites.

<span class="mw-page-title-main">Tectonic evolution of the Aravalli Mountains</span> Overview article

The Aravalli Mountain Range is a northeast-southwest trending orogenic belt in the northwest part of India and is part of the Indian Shield that was formed from a series of cratonic collisions. The Aravalli Mountains consist of the Aravalli and Delhi fold belts, and are collectively known as the Aravalli-Delhi orogenic belt. The whole mountain range is about 700 km long. Unlike the much younger Himalayan section nearby, the Aravalli Mountains are believed much older and can be traced back to the Proterozoic Eon. They are arguably the oldest geological feature on Earth. The collision between the Bundelkhand craton and the Marwar craton is believed to be the primary mechanism for the development of the mountain range.

The Mars Hill Terrane (MHT) is a belt of rocks exposed in the southern Appalachian Mountains, between Roan Mountain, North Carolina and Mars Hill, North Carolina. The terrane is located at the junction between the Western Blue Ridge and the Eastern Blue Ridge Mountains.

The Grenville Province is a tectonically complex region, in Eastern Canada, that contains many different aged accreted terranes from various origins. It exists southeast of the Grenville Front and extends from Labrador southwestern to Lake Huron. It is bounded by the St. Lawrence River/Seaway to the southeast.

The Superior Craton is a stable crustal block covering Quebec, Ontario, and southeast Manitoba in Canada, and northern Minnesota in the United States. It is the biggest craton among those formed during the Archean period. A craton is a large part of the Earth's crust that has been stable and subjected to very little geological changes over a long time. The size of Superior Craton is about 1,572,000 km2. The craton underwent a series of events from 4.3 to 2.57 Ga. These events included the growth, drifting and deformation of both oceanic and continental crusts.

<span class="mw-page-title-main">Mazatzal orogeny</span> Mountain-building event in North America

The Mazatzal orogeny was an orogenic event in what is now the Southwestern United States from 1650 to 1600 Mya in the Statherian Period of the Paleoproterozoic. Preserved in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1700-1600 Mya age Mazatzal island arc terrane with the proto-North American continent. This was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Yavapai orogeny</span> Mountain building event 1.7 billion years ago in the southwestern United States

The Yavapai orogeny was an orogenic (mountain-building) event in what is now the Southwestern United States that occurred between 1710 and 1680 million years ago (Mya), in the Statherian Period of the Paleoproterozoic. Recorded in the rocks of New Mexico and Arizona, it is interpreted as the collision of the 1800-1700 Mya age Yavapai island arc terrane with the proto-North American continent. This was the first in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Picuris orogeny</span> Mountain-building event in what is now the Southwestern US

The Picuris orogeny was an orogenic event in what is now the Southwestern United States from 1.43 to 1.3 billion years ago in the Calymmian Period of the Mesoproterozoic. The event is named for the Picuris Mountains in northern New Mexico and interpreted either as the suturing of the Granite-Rhyolite crustal province to the southern margin of the proto-North American continent Laurentia or as the final suturing of the Mazatzal crustal province onto Laurentia. According to the former hypothesis, this was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.

<span class="mw-page-title-main">Geology of the Kimberley (Western Australia)</span> Overview of geology of the Kimberley

The geology of the Kimberley, a region of Western Australia, is a rock record of the early Proterozoic eon that includes tectonic plate collision, mountain-building (orogeny) and the joining (suturing) of the Kimberley and Northern Australia cratons, followed by sedimentary basin formation.

References

  1. 1 2 3 4 5 6 7 8 9 10 Tollo, Richard P.; Louise Corriveau; James McLelland; Mervin J. Bartholomew (2004). "Proterozoic tectonic evolution of the Grenville orogen in North America: An introduction". In Tollo, Richard P.; Corriveau, Louise; McLelland, James; et al. (eds.). Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir. Vol. 197. Boulder, CO. pp. 1–18. ISBN   978-0-8137-1197-3.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Rivers, T.; et al. (2002). "The High Pressure belt in the Grenville Province: Architecture, timing, and exhumation". Canadian Journal of Earth Sciences. 39 (5): 867–893. Bibcode:2002CaJES..39..867R. doi:10.1139/e02-025.
  3. 1 2 3 4 5 6 7 Corrigan, D.; Hanmer, S. (1997). "Anorthosites and related granitoids in the Grenville orogen: A product of convective thinning of the lithosphere?". Geology. 25 (1): 61–64. Bibcode:1997Geo....25...61C. doi:10.1130/0091-7613(1997)025<0061:AARGIT>2.3.CO;2.
  4. 1 2 3 4 5 DeWolf, C.; Mezger, K. (1994). "Lead isotope analysis of leached feldspars: Constraints on the early crustal history of the Grenville Orogen" (PDF). Geochimica et Cosmochimica Acta. 58 (24): 5537–5550. Bibcode:1994GeCoA..58.5537D. doi:10.1016/0016-7037(94)90248-8. hdl: 2027.42/31183 .
  5. Rivers, T.; et al. (2008). "Assembly and Preservation of lower, mid, and upper orogenic crust in the Grenville Province-Implications for the evolution of large hot long-duration orogens". Precambrian Research. 167 (3–4): 237–259. Bibcode:2008PreR..167..237R. doi:10.1016/j.precamres.2008.08.005.
  6. 1 2 Mosher, Sharon; April M. Hoh; Jostin A. Zumbro; Joseph F. Reese (2004). "Tectonic evolution of the eastern Llano Uplift, central Texas: A record of Grenville orogenesis along the southern Laurentian margin". In Tollo, Richard P.; Corriveau, Louise; McLelland, James; et al. (eds.). Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir. Vol. 197. Boulder, CO. pp. 783–798. ISBN   978-0-8137-1197-3.{{cite book}}: CS1 maint: location missing publisher (link)
  7. 1 2 3 4 5 6 7 8 9 Margaret M.Streepey; Carolina Lithgow-Bertelloni; Ben A. van der Pluijm; Eric J. Essene; Jerry F. Magloughlin (2004). "Exhumation of a collisional orogen: a perspective from the North American Grenville Province". In Tollo, Richard P.; Corriveau, Louise; McLelland, James; et al. (eds.). Proterozoic tectonic evolution of the Grenville orogen in North America (PDF). Geological Society of America Memoir. Vol. 197. Boulder, CO. pp. 391–410. ISBN   978-0-8137-1197-3.{{cite book}}: CS1 maint: location missing publisher (link)
  8. Corriveau, Louise (1990). "Proterozoic subduction and terrane amalgamation in the southwestern Grenville province, Canada: Evidence from ultrapotassic to shoshonitic plutonism". Geology. 14 (7): 614–617. Bibcode:1990Geo....18..614C. doi:10.1130/0091-7613(1990)018<0614:PSATAI>2.3.CO;2.
  9. 1 2 Mosher, S.; et al. (2008). "Mesoproterozoic plate tectonics: A collisional model for the Grenville-aged orogenic belt in the Llano uplift, central Texas". Geology. 36 (1): 55–58. Bibcode:2008Geo....36...55M. doi:10.1130/G24049A.1.
  10. Tollo, Richard P.; John N. Aleinikoff; Elizabeth A. Borduas; Paul C. Hackley; C. Mark Fanning (2004). "Petrologic and geochronologic evolution of the Grenville orogen, northern Blue Ridge province, Virginia". In Tollo, Richard P.; Corriveau, Louise; McLelland, James; et al. (eds.). Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir. Vol. 197. Boulder, CO. pp. 647–677. ISBN   978-0-8137-1197-3.{{cite book}}: CS1 maint: location missing publisher (link)
  11. Indares, Aphrodite; Rivers, Toby (February 1995). "Textures, metamorphic reactions and thermobarometry of eclogitized metagabbros: a Proterozoic example". European Journal of Mineralogy. 7 (1): 43–56. Bibcode:1995EJMin...7...43I. doi:10.1127/ejm/7/1/0043. ISSN   0935-1221.
  12. Emslie, R. F. (1978). "Anorthosite massifs, rapakivi granites, and Late Proterozoic rifting of North America". Precambrian Research. 7 (1): 61–98. Bibcode:1978PreR....7...61E. doi:10.1016/0301-9268(78)90005-0.
  13. Darabi, M. H.; Piper, J. D. A. (2004). "Palaeomagnetism of the (Late Mesoproterozoic) Stoer Group, northwest Scotland: implications for diagenesis, age and relationship to the Grenville Orogeny". Geological Magazine. 141 (1): 15–39. Bibcode:2004GeoM..141...15D. doi:10.1017/S0016756803008148. S2CID   140614712.
  14. 1 2 Cameron, Kenneth L.; Robert Lopez; Fernando Ortega-Gutiérrez; Luigi A. Solari; J. Duncan Keppie; Carlos Schulze (2004). "U-Pb geochronology and Pb isotopic compositions of leached feldspars: Constraints on the origin and evolution of Grenville rocks from eastern and southern Mexico". In Tollo, Richard P.; Corriveau, Louise; McLelland, James; et al. (eds.). Proterozoic tectonic evolution of the Grenville orogen in North America. Geological Society of America Memoir. Vol. 197. Boulder, CO. pp. 755–769. ISBN   978-0-8137-1197-3.{{cite book}}: CS1 maint: location missing publisher (link)
  15. Johnson, Eric L.; Eric T. Goergen; Benjamin L. Fruchey (2004). Tollo, Richard P.; Corriveau, Louise; McLelland, James; et al. (eds.). "Right lateral oblique slip movements followed by post-Ottawan (1050–1020 Ma) orogenic collapse along the Carthage-Colton shear zone: Data from the Dana Hill metagabbro body, Adirondack Mountains, New York". Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Geological Society of America Memoir. Boulder, CO. 197: 357–378. doi:10.1130/0-8137-1197-5.357. ISBN   978-0-8137-1197-3.