The sensitive high-resolution ion microprobe (also sensitive high mass-resolution ion microprobe or SHRIMP) is a large-diameter, double-focusing secondary ion mass spectrometer (SIMS) sector instrument that was produced by Australian Scientific Instruments in Canberra, Australia and now has been taken over by Chinese company Dunyi Technology Development Co. (DTDC) in Beijing. Similar to the IMS 1270-1280-1300 large-geometry ion microprobes produced by CAMECA, Gennevilliers, France and like other SIMS instruments, the SHRIMP microprobe bombards a sample under vacuum with a beam of primary ions that sputters secondary ions that are focused, filtered, and measured according to their energy and mass.
The SHRIMP is primarily used for geological and geochemical applications. It can measure the isotopic and elemental abundances in minerals at a 10 to 30 μm-diameter scale and with a depth resolution of 1–5 μm. Thus, SIMS method is well-suited for the analysis of complex minerals, as often found in metamorphic terrains, some igneous rocks, and for relatively rapid analysis of statistical valid sets of detrital minerals from sedimentary rocks. The most common application of the instrument is in uranium-thorium-lead geochronology, although the SHRIMP can be used to measure some other isotope ratio measurements (e.g., δ7Li or δ11B [1] ) and trace element abundances.
The SHRIMP originated in 1973 with a proposal by Prof. Bill Compston, [2] trying to build an ion microprobe at the Research School of Earth Sciences of the Australian National University that exceeded the sensitivity and resolution of ion probes available at the time in order to analyse individual mineral grains. [3] Optic designer Steve Clement based the prototype instrument (now referred to as 'SHRIMP-I') on a design by Matsuda [4] which minimised aberrations in transmitting ions through the various sectors. [5] The instrument was built from 1975 and 1977 with testing and redesigning from 1978. The first successful geological applications occurred in 1980. [3]
The first major scientific impact was the discovery of Hadean (>4000 million year old) zircon grains at Mt. Narryer in Western Australia [6] and then later at the nearby Jack Hills. [7] These results and the SHRIMP analytical method itself were initially questioned [8] [9] but subsequent conventional analysis were partially confirmed. [10] [11] SHRIMP-I also pioneered ion microprobe studies of titanium, [12] hafnium [13] and sulfur [14] isotopic systems.
Growing interest from commercial companies and other academic research groups, notably Prof. John de Laeter of Curtin University (Perth, Western Australia), led to the project in 1989 to build a commercial version of the instrument, the SHRIMP-II, in association with ANUTECH, the Australian National University's commercial arm. Refined ion optic designs in the mid-1990s prompted development and construction of the SHRIMP-RG (Reverse Geometry) with improved mass resolution. Further advances in design have also led to multiple ion collection systems (already introduced in the market by a French company years before), negative-ion stable isotope measurements and on-going work in developing a dedicated instrument for light stable isotopes. [15]
Fifteen SHRIMP instruments have now been installed around the world [16] [17] and SHRIMP results have been reported in more than 2000 peer reviewed scientific papers. SHRIMP is an important tool for understanding early Earth history having analysed some of the oldest terrestrial material including the Acasta Gneiss [18] [19] and further extending the age of zircons from the Jack Hills [20] and the oldest impact crater on the planet. [21] Other significant milestones include the first U/Pb ages for lunar zircon [22] and Martian apatite [23] dating. More recent uses include the determination of Ordovician sea surface temperature, [24] the timing of snowball Earth events [25] and development of stable isotope techniques. [26] [27]
In a typical U-Pb geochronology analytical mode, a beam of (O2)1− primary ions are produced from a high-purity oxygen gas discharge in the hollow Ni cathode of a duoplasmatron. The ions are extracted from the plasma and accelerated at 10 kV. The primary column uses Köhler illumination to produce a uniform ion density across the target spot. The spot diameter can vary from ~5 µm to over 30 µm as required. Typical ion beam density on the sample is ~10 pA/µm2 and an analysis of 15–20 minutes creates an ablation pit of less than 1 µm. [29]
The primary beam is 45° incident to the plane of the sample surface with secondary ions extracted at 90° and accelerated at 10 kV. Three quadrupole lenses focus the secondary ions onto a source slit and the design aims to maximise transmission of ions rather than preserving an ion image unlike other ion probe designs. [15] A Schwarzschild objective lens provides reflected-light direct microscopic viewing of the sample during analysis. [5] [30]
The secondary ions are filtered and focussed according to their kinetic energy by a 1272 mm radius 90° electrostatic sector. A mechanically-operated slit provides fine-tuning of the energy spectrum transmitted into the magnetic sector [29] and an electrostatic quadrupole lens is used to reduce aberrations in transmitting the ions to the magnetic sector. [4]
The electromagnet has a 1000 mm radius through 72.5° to focus the secondary ions according to their mass/charge ratio according to the principles of the Lorentz force. Essentially, the path of a less massive ion will have a greater curvature through the magnetic field than the path of a more massive ion. Thus, altering the current in the electromagnet focuses a particular mass species at the detector.
The ions pass through a collector slit in the focal plane of the magnetic sector and the collector assembly can be moved along an axis to optimise the focus of a given isotopic species. In typical U-Pb zircon analysis, a single secondary electron multiplier is used for ion counting.
Turbomolecular pumps evacuate the entire beam path of the SHRIMP to maximise transmission and reduce contamination. The sample chamber also employs a cryopump to trap contaminants, especially water. Typical pressures inside the SHRIMP are between ~7 x 10−9 mbar in the detector and ~1 x 10−6 mbar in the primary column (with oxygen duoplasmatron source). [29]
In normal operations, the SHRIMP achieves mass resolution of 5000 with sensitivity >20 counts/sec/ppm/nA for lead from zircon. [28] [29]
For U-Th-Pb geochronology a beam of primary ions (O2)1− are accelerated and collimated towards the target where it sputters "secondary" ions from the sample. These secondary ions are accelerated along the instrument where the various isotopes of uranium, lead and thorium are measured successively, along with reference peaks for Zr2O+, ThO+ and UO+. Since the sputtering yield differs between ion species and relative sputtering yield increases or decreases with time depending on the ion species (due to increasing crater depth, charging effects and other factors), the measured relative isotopic abundances do not relate to the real relative isotopic abundances in the target. Corrections are determined by analysing unknowns and reference material (matrix-matched material of known isotopic composition), and determining an analytical-session specific calibration factor. [31] [32] [33]
Instrument number | Institution | Location | SHRIMP model | Year of commissioning |
---|---|---|---|---|
1 | Australian National University | Canberra | I | 1980 (retired 2011) |
2 | Australian National University | Canberra | II/mc | 1992 |
3 | Curtin University of Technology | Perth | II | 1993 (moved to Uni Queensland 2020) |
4 | Geological Survey of Canada | Ottawa | II | 1995 |
5 | Hiroshima University | Hiroshima | IIe | 1996 |
6 | Australian National University | Canberra | RG | 1998 |
7 | USGS and Stanford University | Stanford | RG | 1998 |
8 | National Institute of Polar Research | Tokyo | II | 1999 |
9 | Chinese Academy of Geological Sciences | Beijing | II | 2001 |
10 | All Russian Geological Research Institute | St. Petersburg | II/mc | 2003 |
11 | Curtin University of Technology | Perth | II/mc | 2003 |
12 | Geoscience Australia | Canberra | IIe | 2008 |
13 | Korea Basic Science Institute | Ochang | IIe/mc | 2009 |
14 | University of São Paulo | São Paulo | II/mc | 2010 |
15 | University of Granada | Granada | IIe/mc | 2011 |
16 | Australian National University | Canberra | SI/mc | 2012 |
17 | Chinese Academy of Geological Sciences | Beijing | IIe/mc | 2013 |
18 | National Institute of Advanced Industrial Science and Technology | Tsukuba | IIe/amc | 2013 |
19 | Polish Geological Institute - National Research Institute | Warsaw | IIe/mc | 2014 |
20 | National Institute of Polar Research | Tokyo | IIe/amc | 2014 |
21 | Shandong Institute of Geological Sciences | Jinan | V | 2023 |
Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of Earth itself, and can also be used to date a wide range of natural and man-made materials.
Zircon is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is ZrSiO4. An empirical formula showing some of the range of substitution in zircon is (Zr1–y, REEy)(SiO4)1–x(OH)4x–y. Zircon precipitates from silicate melts and has relatively high concentrations of high field strength incompatible elements. For example, hafnium is almost always present in quantities ranging from 1 to 4%. The crystal structure of zircon is tetragonal crystal system. The natural color of zircon varies between colorless, yellow-golden, red, brown, blue, and green.
Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. The mass/charge ratios of these secondary ions are measured with a mass spectrometer to determine the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm. Due to the large variation in ionization probabilities among elements sputtered from different materials, comparison against well-calibrated standards is necessary to achieve accurate quantitative results. SIMS is the most sensitive surface analysis technique, with elemental detection limits ranging from parts per million to parts per billion.
Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routine precisions in the 0.1–1 percent range.
Isotope-ratio mass spectrometry (IRMS) is a specialization of mass spectrometry, in which mass spectrometric methods are used to measure the relative abundance of isotopes in a given sample.
John Robert de Laeter, AO, FTSE, FAIP was an Australian scientist with a distinguished career across several fields in nuclear physics, cosmochemistry, geochronology, isotope geochemistry. He was also a prominent administrator and promoter who oversaw the establishment of several scientific research and education centres in Western Australia.
Thermal ionization mass spectrometry (TIMS) is also known as surface ionization and is a highly sensitive isotope mass spectrometry characterization technique. The isotopic ratios of radionuclides are used to get an accurate measurement for the elemental analysis of a sample. Singly charged ions of the sample are formed by the thermal ionization effect. A chemically purified liquid sample is placed on a metal filament which is then heated to evaporate the solvent. The removal of an electron from the purified sample is consequently achieved by heating the filament enough to release an electron, which then ionizes the atoms of the sample. TIMS utilizes a magnetic sector mass analyzer to separate the ions based on their mass to charge ratio. The ions gain velocity by an electrical potential gradient and are focused into a beam by electrostatic lenses. The ion beam then passes through the magnetic field of the electromagnet where it is partitioned into separate ion beams based on the ion's mass/charge ratio. These mass-resolved beams are directed into a detector where it is converted into voltage. The voltage detected is then used to calculate the isotopic ratio.
The Grouse Creek block is a Precambrian basement province of 2.45 to 2.70 billion year old orthogneisses. The Grouse Creek block is one of several Proterozoic and Archean accreted terranes that lie to the north and west of the Wyoming craton, including the Farmington Canyon Complex, the Selway terrane, the Medicine Hat block and the Priest River complex. Together, these terranes comprise part of the basement rock of the North American continent and have been critical to studies of crustal accretion in the Precambrian. Ongoing study of the Grouse Creek block will contribute to understanding the paleogeography of the Wyoming craton prior to its incorporation into the supercontinent Laurentia approximately 1.86 billion years ago. The name was proposed by David Foster and others.
Provenance in geology, is the reconstruction of the origin of sediments. The Earth is a dynamic planet, and all rocks are subject to transition between the three main rock types: sedimentary, metamorphic, and igneous rocks. Rocks exposed to the surface are sooner or later broken down into sediments. Sediments are expected to be able to provide evidence of the erosional history of their parent source rocks. The purpose of provenance study is to restore the tectonic, paleo-geographic and paleo-climatic history.
Titanium in zircon geothermometry is a form of a geothermometry technique by which the crystallization temperature of a zircon crystal can be estimated by the amount of titanium atoms which can only be found in the crystal lattice. In zircon crystals, titanium is commonly incorporated, replacing similarly charged zirconium and silicon atoms. This process is relatively unaffected by pressure and highly temperature dependent, with the amount of titanium incorporated rising exponentially with temperature, making this an accurate geothermometry method. This measurement of titanium in zircons can be used to estimate the cooling temperatures of the crystal and infer conditions during which it crystallized. Compositional changes in the crystals growth rings can be used to estimate the thermodynamic history of the entire crystal. This method is useful as it can be combined with radiometric dating techniques that are commonly used with zircon crystals, to correlate quantitative temperature measurements with specific absolute ages. This technique can be used to estimate early Earth conditions, determine metamorphic facies, or to determine the source of detrital zircons, among other uses.
NanoSIMS is an analytical instrument manufactured by CAMECA which operates on the principle of secondary ion mass spectrometry. The NanoSIMS is used to acquire nanoscale resolution measurements of the elemental and isotopic composition of a sample. The NanoSIMS is able to create nanoscale maps of elemental or isotopic distribution, parallel acquisition of up to seven masses, isotopic identification, high mass resolution, subparts-per-million sensitivity with spatial resolution down to 50 nm.
Detrital zircon geochronology is the science of analyzing the age of zircons deposited within a specific sedimentary unit by examining their inherent radioisotopes, most commonly the uranium–lead ratio. Zircon is a common accessory or trace mineral constituent of most granite and felsic igneous rocks. Due to its hardness, durability and chemical inertness, zircon persists in sedimentary deposits and is a common constituent of most sands. Zircons contain trace amounts of uranium and thorium and can be dated using several modern analytical techniques.
Monazite geochronology is a dating technique to study geological history using the mineral monazite. It is a powerful tool in studying the complex history of metamorphic rocks particularly, as well as igneous, sedimentary and hydrothermal rocks. The dating uses the radioactive processes in monazite as a clock.
Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.
Roberta L. Rudnick is an American earth scientist and professor of geology at the University of California, Santa Barbara. She was elected a member of the National Academy of Sciences in 2010 and was awarded the Dana Medal by the Mineralogical Society of America. Rudnick is a world expert in the continental crust and lithosphere.
The Eastern Block of the North China Craton is one of the Earth's oldest pieces of continent. It is separated from the Western Block by the Trans-North China Orogen. It is situated in northeastern China and North Korea. The Block contains rock exposures older than 2.5 billion years. It serves as an ideal place to study how the crust was formed in the past and the related tectonic settings.
The Picuris orogeny was an orogenic event in what is now the Southwestern United States from 1.43 to 1.3 billion years ago in the Calymmian Period of the Mesoproterozoic. The event is named for the Picuris Mountains in northern New Mexico and interpreted either as the suturing of the Granite-Rhyolite crustal province to the southern margin of the proto-North American continent Laurentia or as the final suturing of the Mazatzal crustal province onto Laurentia. According to the former hypothesis, this was the second in a series of orogenies within a long-lived convergent boundary along southern Laurentia that ended with the ca. 1200–1000 Mya Grenville orogeny during the final assembly of the supercontinent Rodinia, which ended an 800-million-year episode of convergent boundary tectonism.
Janet Margaret Hergt is an Australian geochemist. She is a Redmond Barry Distinguished Professor in the School of Geography, Earth and Atmospheric Sciences at the University of Melbourne, Victoria, Australia. The main focus of her research has been in the chemical analysis of rocks and minerals to explore the exquisite record of Earth processes preserved within them. Hergt is best known for her geochemical investigations of magmatic rocks although she has employed similar techniques in interdisciplinary projects including areas of archaeological and biological science.
The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered as the oldest part of the Indian peninsula.