Jack Hills

Last updated
Satellite image Jack Hills, Western Australia (Landsat 5 TM, 2009-07-14, detail).jpg
Satellite image
Location of the Jack Hills in Australia JackHills Location.jpg
Location of the Jack Hills in Australia

The Jack Hills are a range of hills in Mid West Western Australia. They are best known as the source of the oldest material of terrestrial origin found to date: Hadean zircons that formed around 4.404 billion years ago. These zircons have enabled deeper research into the conditions on Earth in the Hadean eon. In 2015, "remains of biotic life" were found in 4.1 billion-year-old rocks there. [1] [2] According to one of the researchers, "If life arose relatively quickly on Earth ...then it could be common in the universe." [1]

Contents

Geography

They are located on the border of the Shire of Murchison and the Shire of Meekatharra, south of the Murchison River, about 800 kilometres (500 mi) north of Perth.

Geology

The Jack Hills are located in the Narryer Gneiss Terrane of the Yilgarn Craton, Western Australia, and comprise an 80 kilometres (50 mi) long northeast-trending belt of folded and metamorphosed supracrustal rocks. [3]

Sedimentary siliciclastic rocks, interpreted as alluvial fan-delta deposits, are the major lithology. Minor mafic/ultramafic rocks and banded iron formation (BIF) are also found in the sequence. The overall sequence is generally considered to be a granulite gneiss, which has undergone multiple deformations and multiple metamorphic episodes. The protolith age of the Narryer Gneiss Terrane is variable, but generally considered to be in excess of 3.6 Ga (billion years).

Oldest zircons on Earth

Quartz-pebble metaconglomerate (Jack Hills Quartzite), the rock type that contains Earth's oldest dated mineral grains (detrital zircon) Quartz-pebble metaconglomerate (Jack Hills Quartzite, Archean, 2.65 to 3.05 Ga; Jack Hills, Western Australia) 2.jpg
Quartz-pebble metaconglomerate (Jack Hills Quartzite), the rock type that contains Earth's oldest dated mineral grains (detrital zircon)

Detrital zircons with ages greater than 4 billion years old have been found in these rocks, and a 4,404 ± 8 million year old zircon was found at Erawandoo Hill; [4] this is the oldest dated material originating on Earth; the date is in the Cryptic era of the Hadean eon. They were found within a unit of the supracrustal sequence, a metamorphosed conglomerate considered to have an age ~3.0 Ga. Given the detrital nature of the rock unit, the zircons are sourced from pre-existing rocks which were then weathered and the resultant sediment deposited as sedimentary rock. [5]

The zircons and various aspects of their geochemistry provide evidence for the existence of continental-type crust on the surface of Earth during the Hadean eon, contrasting with earlier ideas on the earliest phase of Earth's history. Additionally, oxygen isotopic ratios in the zircons provide evidence for the presence of liquid water on the surface, if not a water ocean; [6] also contrasting with earlier ideas on Earth's history. The hypothesis of humid and cool conditions before the Late Heavy Bombardment has been promoted as cool early Earth.

Economic geology

The Jack Hills banded iron formation (BIF) is the site of a non-operating minor iron ore mine owned by Mitsubishi Development Pty Ltd, a wholly owned subsidiary of Mitsubishi Corporation, which in the past exported up to 3 million tonnes per annum of high grade detrital hematite iron ore via the port of Geraldton. [7] [8]

Other companies operating in the area are also planning major magnetite BIF-based iron ore mines. [9]

Conservation

Because of their importance as a geology research site, the Jack Hills were nominated to the Register of the National Estate in 2003. As of 2009, they had an "Interim Listing", which means they have been formally proposed for inclusion in the Register. [10] In July 2020 it was announced that the Erawondoo Hill site has been permanently included in the National Heritage List. [11]

IUGS geological heritage site

In respect of being the 'largest in situ repository of the oldest terrestrial crystals known to exist on Earth', the International Union of Geological Sciences (IUGS) included the 'Archean zircons of Erawondoo Hill' in its assemblage of 100 'geological heritage sites' around the world in a listing published in October 2022. The organisation defines an IUGS Geological Heritage Site as 'a key place with geological elements and/or processes of international scientific relevance, used as a reference, and/or with a substantial contribution to the development of geological sciences through history.' [12]

See also

Related Research Articles

The Precambrian is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinised name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.

<span class="mw-page-title-main">Zircon</span> Zirconium silicate, a mineral belonging to the group of nesosilicates

Zircon is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is ZrSiO4. An empirical formula showing some of the range of substitution in zircon is (Zr1–y, REEy)(SiO4)1–x(OH)4x–y. Zircon precipitates from silicate melts and has relatively high concentrations of high field strength incompatible elements. For example, hafnium is almost always present in quantities ranging from 1 to 4%. The crystal structure of zircon is tetragonal crystal system. The natural color of zircon varies between colorless, yellow-golden, red, brown, blue, and green.

The Hadean is the first and oldest of the four known geologic eons of Earth's history. The Hadean eon started with the planet's formation about 4.54 Bya, now defined as Mya set by the age of the oldest solid material in the Solar System found in some meteorites about 4.567 billion years old. The proposed interplanetary collision that created the Moon occurred early in this eon, and the Late Heavy Bombardment is hypothesized to have occurred at the end of the eon. The Hadean ended 4.031 billion years ago, and was succeeded by the Archean eon.

<span class="mw-page-title-main">Kenorland</span> Hypothetical Neoarchaean supercontinent from about 2.8 billion years ago

Kenorland was one of the earliest known supercontinents on Earth. It is thought to have formed during the Neoarchaean Era c. 2.72 billion years ago by the accretion of Neoarchaean cratons and the formation of new continental crust. It comprised what later became Laurentia, Baltica, Western Australia and Kalaharia.

The Cryptic era is an informal term for the earliest geologic evolution of the Earth and Moon. It is the oldest (informal) era of the Hadean eon, and it is commonly accepted to have begun close to about 4.533 billion years ago when the Earth and Moon formed, and lasted to about 4.15 billion years ago. No samples exist to date the transition between the Cryptic era and the following Basin Groups era for the Moon, though sometimes it is stated that this era ended 4150 million years ago for one or both of these bodies. Neither this time period, nor any other Hadean subdivision, has been officially recognized by the International Commission on Stratigraphy.

<span class="mw-page-title-main">Acasta Gneiss</span> Rock that is among the oldest known crustal fragments on Earth

The Acasta Gneiss is a tonalite gneiss in the Slave craton in the Northwest Territories, Canada. The rock body is exposed on an island about 300 kilometres north of Yellowknife. The rock of the outcrop was metamorphosed 3.58 to 4.031 billion years ago and is one of the oldest known intact crustal fragments on Earth.

<span class="mw-page-title-main">Narryer Gneiss Terrane</span> Geological complex of ancient rocks in Western Australia

The Narryer Gneiss Terrane is a geological complex in Western Australia that is composed of a tectonically interleaved and polydeformed mixture of granite, mafic intrusions and metasedimentary rocks in excess of 3.3 billion years old, with the majority of the Narryer Gneiss Terrane in excess of 3.6 billion years old. The rocks have experienced multiple metamorphic events at amphibolite or granulite conditions, resulting in often complete destruction of original igneous or sedimentary (protolith) textures. Importantly, it contains the oldest known samples of the Earth's crust: samples of zircon from the Jack Hills portion of the Narryer Gneiss have been radiometrically dated at 4.4 billion years old, although the majority of zircon crystals are about 3.6-3.8 billion years old.

<span class="mw-page-title-main">Yilgarn Craton</span> Large craton in Western Australia

The Yilgarn Craton is a large craton that constitutes the bulk of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have been dated at ~4.27 Ga, with one detrital zircon dated as old as 4.4 Ga.

<span class="mw-page-title-main">Oldest dated rocks</span> Includes rocks over 4 billion years old from the Hadean Eon

The oldest dated rocks formed on Earth, as an aggregate of minerals that have not been subsequently broken down by erosion or melted, are more than 4 billion years old, formed during the Hadean Eon of Earth's geological history. Meteorites that were formed in other planetary systems can pre-date Earth. Particles from the Murchison meteorite were dated in January 2020 to be 7 billion years old.

<span class="mw-page-title-main">Isua Greenstone Belt</span> Archean greenstone belt in southwestern Greenland

The Isua Greenstone Belt is an Archean greenstone belt in southwestern Greenland, aged between 3.7 and 3.8 billion years. The belt contains variably metamorphosed mafic volcanic and sedimentary rocks, and is the largest exposure of Eoarchaean supracrustal rocks on Earth. Due to its age and low metamorphic grade relative to many Eoarchaean rocks, the Isua Greenstone Belt has become a focus for investigations on the emergence of life and the style of tectonics that operated on the early Earth.

Early Earth is loosely defined as Earth in its first one billion years, or gigayear (Ga, 109y). Early Earth is defined as encompassing approximately the first gigayear in the evolution of the planet from its initial formation in the young Solar System at about 4.55 Ga to sometime in the Archean eon in approximately 3.5 Ga. On the geologic time scale, this comprises all of the Hadean eon, starting with the formation of the Earth about 4.6 billion years ago, and the Eoarchean, starting 4 billion years ago, and part of the Paleoarchean era, starting 3.6 billion years ago, of the Archean eon.

<span class="mw-page-title-main">Slave Craton</span> Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut

The Slave Craton is an Archaean craton in the north-western Canadian Shield, in Northwest Territories and Nunavut. The Slave Craton includes the 4.03 Ga-old Acasta Gneiss which is one of the oldest dated rocks on Earth. Covering about 300,000 km2 (120,000 sq mi), it is a relatively small but well-exposed craton dominated by ~2.73–2.63 Ga greenstones and turbidite sequences and ~2.72–2.58 Ga plutonic rocks, with large parts of the craton underlain by older gneiss and granitoid units. The Slave Craton is one of the blocks that compose the Precambrian core of North America, also known as the palaeocontinent Laurentia.

Supracrustal rocks are rocks that were deposited on the existing basement rocks of the crust, hence the name. They may be further metamorphosed from both sedimentary and volcanic rocks.

<span class="mw-page-title-main">Nuvvuagittuq Greenstone Belt</span>

The Nuvvuagittuq Greenstone Belt is a sequence of metamorphosed mafic to ultramafic volcanic and associated sedimentary rocks located on the eastern shore of Hudson Bay, 40 km southeast of Inukjuak, Quebec. These rocks have undergone extensive metamorphism, and represent some of the oldest surface rocks on Earth.

<span class="mw-page-title-main">Lewisian complex</span> Suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland

The Lewisian complex or Lewisian gneiss is a suite of Precambrian metamorphic rocks that outcrop in the northwestern part of Scotland, forming part of the Hebridean Terrane and the North Atlantic Craton. These rocks are of Archaean and Paleoproterozoic age, ranging from 3.0–1.7 billion years (Ga). They form the basement on which the Torridonian and Moine Supergroup sediments were deposited. The Lewisian consists mainly of granitic gneisses with a minor amount of supracrustal rocks. Rocks of the Lewisian complex were caught up in the Caledonian orogeny, appearing in the hanging walls of many of the thrust faults formed during the late stages of this tectonic event.

The Chaotian is a proposed time division of the geologic time scale. First proposed in 2010 as an eon, it is named after Chaos, the primeval void in Greek mythology. This proposal defines the Chaotian eon as a Solar System wide time between the initiation of planetary formation and the hypothesised collision of the protoplanet Theia with the proto-Earth.

<span class="mw-page-title-main">Eoarchean geology</span> Study of the oldest crustal fragments on Earth

Eoarchean geology is the study of the oldest preserved crustal fragments of Earth during the Eoarchean era from 4.031 to 3.6 billion years ago. Major well-preserved rock units dated Eoarchean are known from three localities, the Isua Greenstone Belt in Southwest Greenland, the Acasta Gneiss in the Slave Craton in Canada, and the Nuvvuagittuq Greenstone Belt in the eastern coast of Hudson Bay in Quebec. From the dating of rocks in these three regions scientists suggest that plate tectonics could go back as early as Eoarchean.

<span class="mw-page-title-main">Hadean zircon</span> Oldest-surviving crustal material from the Earths earliest geological time period

Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.

<span class="mw-page-title-main">Iron Quadrangle</span>

The Iron Quadrangle is a mineral-rich region covering about 7,000 square kilometres (2,700 sq mi) in the central-southern part of the Brazilian state Minas Gerais. The area is known for its extensive deposits of gold, diamonds, and iron ore, being the source of approximately 40% of all gold produced in Brazil between the years 1500 and 2000. The deposits themselves pertain to the Minas Supergroup, a sequence of meta-sedimentary rocks initially formed in the Paleoproterozoic, about 2.5 Ga. In the 2010s, there have been two collapses of large tailings dams, which caused extensive damage and loss of life.

<span class="mw-page-title-main">Eastern Block of the North China Craton</span>

The Eastern Block of the North China Craton is one of the Earth's oldest pieces of continent. It is separated from the Western Block by the Trans-North China Orogen. It is situated in northeastern China and North Korea. The Block contains rock exposures older than 2.5 billion years. It serves as an ideal place to study how the crust was formed in the past and the related tectonic settings.

References

  1. 1 2 Borenstein, Seth (19 October 2015). "Hints of life on what was thought to be desolate early Earth". Associated Press. Retrieved 9 October 2018.
  2. Bell, Elizabeth A.; Boehnike, Patrick; Harrison, T. Mark; et al. (19 October 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon" (PDF). Proc. Natl. Acad. Sci. U.S.A. Washington, D.C.: National Academy of Sciences. 112 (47): 14518–21. Bibcode:2015PNAS..11214518B. doi: 10.1073/pnas.1517557112 . ISSN   1091-6490. PMC   4664351 . PMID   26483481 . Retrieved 2015-10-20. Early edition, published online before print.
  3. "Western Australia's Jack Hills". NASA Earth Observatory newsroom. Archived from the original on 2006-10-01. Retrieved 2006-04-28.
  4. Wilde, Simon A.; Valley, John W.; Peck, William H.; Graham, Colin M. (January 2001). "Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago" (PDF). Nature. 409 (6817): 175–178. doi:10.1038/35051550. PMID   11196637. S2CID   4319774.
  5. "Zircons are Forever". Archived from the original on 2007-04-12. Retrieved 2007-04-28.
  6. Lindsey, Rebecca (1 March 2006). "Ancient Crystals Suggest Earlier Ocean". NASA Earth Observatory . Retrieved 2015-08-26.
  7. "Jack Hills". Australian Mine Sites (A-Z). Perth, Western Australia: Mining Oil Gas Pty Ltd. 2013. Archived from the original on 14 January 2015. Retrieved 14 January 2015.
  8. Stevens, Matthew (25 November 2011). "Mitsubishi pays high price for control of Oakajee-Jack Hills iron ore project". The Australian . Retrieved 14 January 2015.
  9. "Midwest Resources Conference 2007" (PDF). Midwest Development Corporation. 1 March 2007. Archived from the original (PDF) on 30 August 2007. Retrieved 2007-08-31.
  10. "Jack Hills, Cue, WA, Australia (Place ID 18283)". Australian Heritage Database . Australian Government . Retrieved 2009-02-01.
  11. "Site of 4.4-billion-year-old mineral fragments receives national protection". www.abc.net.au. 3 July 2020. Retrieved 3 July 2020.
  12. "The First 100 IUGS Geological Heritage Sites" (PDF). IUGS International Commission on Geoheritage. IUGS. Retrieved 13 November 2022.

26°07′S117°09′E / 26.117°S 117.150°E / -26.117; 117.150