A sex-determination system is a biological system that determines the development of sexual characteristics in an organism. [1] Most organisms that create their offspring using sexual reproduction have two common sexes and a few less common intersex variations.
In some species, there are hermaphrodites, i.e., individuals that can function reproductively as either female or male. [2]
There are also some species in which only one sex is present, temporarily or permanently. This can be due to parthenogenesis, the act of a female reproducing without fertilization. In some plants or algae the gametophyte stage may reproduce itself, thus producing more individuals of the same sex as the parent.
In some species, sex determination is genetic: males and females have different alleles or even different genes that specify their sexual morphology. In animals this is often accompanied by chromosomal differences, generally through combinations of XY, ZW, XO, ZO chromosomes, or haplodiploidy. The sexual differentiation is generally triggered by a main gene (a "sex locus"), with a multitude of other genes following in a domino effect.
In other cases, sex of a fetus is determined by environmental variables (such as temperature). The details of some sex-determination systems are not yet fully understood. Hopes [ who? ] for future fetal biological system analysis include complete-reproduction-system initialized signals that can be measured during pregnancies to more accurately determine whether a determined sex of a fetus is male, or female.[ citation needed ] Such analysis of biological systems could also signal whether the fetus is hermaphrodite, which includes total or partial of both male and female reproduction organs.
Some species such as various plants and fish do not have a fixed sex, and instead go through life cycles and change sex based on genetic cues during corresponding life stages of their type. This could be due to environmental factors such as seasons and temperature. In some gonochoric species, a few individuals may have sex characteristics of both sexes, a condition called intersex. [3]
This section needs expansion. You can help by adding to it. (June 2021) |
Sex determination was discovered in the mealworm by the American geneticist Nettie Stevens in 1903. [4] [5] [6]
In 1694, J.R. Camerarius, conducted early experiments on pollination and reported the existence of male and female characteristics in plants(Maize).
In 1866, Gregor Mendel published on inheritance of genetic traits. This is known as Mendelian inheritance and it eventually established the modern understanding of inheritance from two gametes.
In 1902, C.E. McClung identified sex chromosomes in bugs.
In 1917, C.E. Allen, discovered sex determination mechanisms in plants.
In 1922, C.B. Bridges, put forth the Genic Balance Theory of sex determination.
Among animals, the most common chromosomal sex determination systems are XY, XO, ZW, ZO, but with numerous exceptions.
According to the Tree of Sex database [7] (as of 2023), the known sex determination systems are: [8]
Taxonomic group | XY | XO | ZW | ZO | Other1 | XO/XY ratio | ZO/ZW ratio |
---|---|---|---|---|---|---|---|
Vertebrates | 722 | 15 | 480 | 3 | 254 | 0.02 | 0.01 |
Insects | 4415 | 1857 | 37 | 25 | 156 | 0.42 | 0.68 |
Angiosperms | 23 | 0 | 1 | 0 | 19 | 0.00 | 0.00 |
Total | 5160 | 1872 | 518 | 28 | 429 | 0.36 | 0.05 |
1. complex sex chromosomes, homomorphic sex chromosomes, or others
The XX/XY sex-determination system is the most familiar, as it is found in humans. The XX/XY system is found in most other mammals, as well as some insects. In this system, females have two of the same kind of sex chromosome (XX), while males have two distinct sex chromosomes (XY). The X and Y sex chromosomes are different in shape and size from each other, unlike the rest of the chromosomes (autosomes), and are sometimes called allosomes. In some species, such as humans, organisms remain sex indifferent for a time during development (embryogenesis); in others, however, such as fruit flies, sexual differentiation occurs as soon as the egg is fertilized. [9]
Some species (including humans) have a gene SRY on the Y chromosome that determines maleness. Members of SRY-reliant species can have uncommon XY chromosomal combinations such as XXY and still live. [9] Human sex is determined by the presence or absence of a Y chromosome with a functional SRY gene. Once the SRY gene is activated, cells create testosterone and anti-müllerian hormone which typically ensures the development of a single, male reproductive system. [9] In typical XX embryos, cells secrete estrogen, which drives the body toward the female pathway.
In Y-centered sex determination, the SRY gene is the main gene in determining male characteristics, but multiple genes are required to develop testes. In XY mice, lack of the gene DAX1 on the X chromosome results in sterility, but in humans it causes adrenal hypoplasia congenita. [10] However, when an extra DAX1 gene is placed on the X chromosome, the result is a female, despite the existence of SRY, since it overrides the effects of SRY. [11] Even when there are normal sex chromosomes in XX females, duplication or expression of SOX9 causes testes to develop. [12] [13] Gradual sex reversal in developed mice can also occur when the gene FOXL2 is removed from females. [14] Even though the gene DMRT1 is used by birds as their sex locus, species who have XY chromosomes also rely upon DMRT1, contained on chromosome 9, for sexual differentiation at some point in their formation. [9]
Some species, such as fruit flies, use the presence of two X chromosomes to determine femaleness. [15] Species that use the number of Xs to determine sex are nonviable with an extra X chromosome.
Some fish have variants of the XY sex-determination system, as well as the regular system. For example, while having an XY format, Xiphophorus nezahualcoyotl and X. milleri also have a second Y chromosome, known as Y', that creates XY' females and YY' males. [16]
At least one monotreme, the platypus, presents a particular sex determination scheme that in some ways resembles that of the ZW sex chromosomes of birds and lacks the SRY gene. The platypus has sex chromosomes . The males have , while females have . During meiosis, 5 of X form one chain, and 5 of Y form another chain. Thus, they behave effectively as a typical XY chromosomal system, except each of X and Y is broken into 5 parts, with the effect at recombinations occur very frequently at 4 particular points. [17] One of the X chromosomes is homologous to the human X chromosome, and another is homologous to the bird Z chromosome. [18]
Although it is an XY system, the platypus' sex chromosomes share no homologues with eutherian sex chromosomes. [19] Instead, homologues with eutherian sex chromosomes lie on the platypus chromosome 6, which means that the eutherian sex chromosomes were autosomes at the time that the monotremes diverged from the therian mammals (marsupials and eutherian mammals). However, homologues to the avian DMRT1 gene on platypus sex chromosomes X3 and X5 suggest that it is possible the sex-determining gene for the platypus is the same one that is involved in bird sex-determination. More research must be conducted in order to determine the exact sex determining gene of the platypus. [20]
In this variant of the XY system, females have two copies of the sex chromosome (XX) but males have only one (X0). The 0 denotes the absence of a second sex chromosome. Generally in this method, the sex is determined by amount of genes expressed across the two chromosomes. This system is observed in a number of insects, including the grasshoppers and crickets of order Orthoptera and in cockroaches (order Blattodea). A small number of mammals also lack a Y chromosome. These include the Amami spiny rat ( Tokudaia osimensis ) and the Tokunoshima spiny rat ( Tokudaia tokunoshimensis ) and Sorex araneus, a shrew species. Transcaucasian mole voles ( Ellobius lutescens ) also have a form of XO determination, in which both sexes lack a second sex chromosome. [11] The mechanism of sex determination is not yet understood. [21]
The nematode C. elegans is male with one sex chromosome (X0); with a pair of chromosomes (XX) it is a hermaphrodite. [22] Its main sex gene is XOL, which encodes XOL-1 and also controls the expression of the genes TRA-2 and HER-1. These genes reduce male gene activation and increase it, respectively. [23]
The ZW sex-determination system is found in birds, some reptiles, and some insects and other organisms. The ZW sex-determination system is reversed compared to the XY system: females have two different kinds of chromosomes (ZW), and males have two of the same kind of chromosomes (ZZ). In the chicken, this was found to be dependent on the expression of DMRT1. [24] In birds, the genes FET1 and ASW are found on the W chromosome for females, similar to how the Y chromosome contains SRY. [9] However, not all species depend upon the W for their sex. For example, there are moths and butterflies that are ZW, but some have been found female with ZO, as well as female with ZZW. [22] Also, while mammals deactivate one of their extra X chromosomes when female, it appears that in the case of Lepidoptera, the males produce double the normal amount of enzymes, due to having two Z's. [22] Because the use of ZW sex determination is varied, it is still unknown how exactly most species determine their sex. [22] However, reportedly, the silkworm Bombyx mori uses a single female-specific piRNA as the primary determiner of sex. [25] Despite the similarities between the ZW and XY systems, these sex chromosomes evolved separately. In the case of the chicken, their Z chromosome is more similar to humans' autosome 9. [26] The chicken's Z chromosome also seems to be related to the X chromosome of the platypus. [27] When a ZW species, such as the Komodo dragon, reproduces parthenogenetically, usually only males are produced. This is due to the fact that the haploid eggs double their chromosomes, resulting in ZZ or WW. The ZZ become males, but the WW are not viable and are not brought to term. [28]
In both XY and ZW sex determination systems, the sex chromosome carrying the critical factors is often significantly smaller, carrying little more than the genes necessary for triggering the development of a given sex. [29] [ better source needed ]
The ZZ/Z0 sex-determination system is found in some moths. In these insects there is one sex chromosome, Z. Males have two Z chromosomes, whereas females have one Z. Males are ZZ, while females are Z0. [30] [31] [32]
In some bryophyte and some algae species, the gametophyte stage of the life cycle, rather than being hermaphrodite, occurs as separate male or female individuals that produce male and female gametes respectively. When meiosis occurs in the sporophyte generation of the life cycle, the sex chromosomes known as U and V assort in spores that carry either the U chromosome and give rise to female gametophytes, or the V chromosome and give rise to male gametophytes. [33] [34]
The mating type in microorganisms is analogous to sex in multi-cellular organisms, and is sometimes described using those terms, though they are not necessarily correlated with physical body structures. Some species have more than two mating types. Tetrahymena, a type of ciliate, has 7 mating types
Mating types are extensively studied in fungi. Among fungi, mating type is determined by chromosomal regions called mating-type loci. Furthermore, it is not as simple as "two different mating types can mate", but rather, a matter of combinatorics. As a simple example, most basidiomycete have a "tetrapolar heterothallism" mating system: there are two loci, and mating between two individuals is possible if the alleles on both loci are different. For example, if there are 3 alleles per locus, then there would be 9 mating types, each of which can mate with 4 other mating types. [35] By multiplicative combination, it generates a vast number of mating types. For example, Schizophyllum commune, a type of fungus, has mating types.
Haplodiploidy is found in insects belonging to Hymenoptera, such as ants and bees. Sex determination is controlled by the zygosity of a complementary sex determiner (csd) locus. Unfertilized eggs develop into haploid individuals which have a single, hemizygous copy of the csd locus and are therefore males. Fertilized eggs develop into diploid individuals which, due to high variability in the csd locus, are generally heterozygous females. In rare instances diploid individuals may be homozygous, these develop into sterile males. The gene acting as a csd locus has been identified in the honeybee and several candidate genes have been proposed as a csd locus for other Hymenopterans. [36] [37] [38] Most females in the Hymenoptera order can decide the sex of their offspring by holding received sperm in their spermatheca and either releasing it into their oviduct or not. This allows them to create more workers, depending on the status of the colony. [39]
Polygenic sex determination is when the sex is primarily determined by genes that occur on multiple non-homologous chromosomes. The environment may have a limited, minor influence on sex determination. Examples include African cichlid fish ( Metriaclima spp.), lemmings ( Myopus schisticolor ), green swordtail, [16] medaka, [16] etc. In such systems, there is typically a dominance hierarchy, where one system is dominant over another if in conflict. For example, in some species of cichlid fish from Lake Malawi, if an individual has both the XY locus (on one chromosome pair) and the WZ locus (on another chromosome pair), then the W is dominant and the individual has a female phenotype. [40]
The sex-determination system of zebrafish is polygenic. Juvenile zebrafishes (0–30 days after hatching) have both ovary-like tissue to testis tissue. They then develop into male or female adults, with the determination based on a complex interaction genes on multiple chromosomes, but not affected by environmental variations. [41] [42]
In systems with two sex chromosomes, they can be heteromorphic or homomorphic. Homomorphic sex chromosomes are almost identical in size and gene content. The two familiar kinds of sex chromosome pairs (XY and ZW) are heteromorphic. Homomorphic sex chromosomes exist among pufferfish, ratite birds, pythons, and European tree frogs. Some are quite old, meaning that there is some evolutionary force that resists their differentiation. [43] For example, three species of European tree frogs have homologous, homomorphic sex chromosomes, and this homomorphism was maintained for at least 5.4 million years by occasional recombination. [44]
The Nematocera , particularly the Simuliids and Chironomus, have sex determination regions that are labile, meaning that one species may have the sex determination region in one chromosome, but a closely related species might have the same region moved to a different non-homologous chromosome. Some species even have the sex determination region different among individuals withinthe same species (intraspecific variation). [45] [46] [47] In some species, some populations have homomorphic sex chromosomes while other populations have heteromorphic sex chromosomes.
The New Zealand frog, Leiopelma hochstetteri , uses a supernumerary sex chromosome. With zero of that chromosome, the frog develops into a male. With one or more, the frog develops into a female. One female had as many as 16 of that chromosome. [48]
Different populations of the Japanese frog Rana rugosa uses different systems. Two use homomorphic male heterogamety, one uses XX/XY, one uses ZZ/ZW. Remarkably, the X and Z chromosomes are homologous, and the Y and W as well. Dmrt1 is on autosome 1 and not sex-linked. This means that an XX female individual is genetically similar to a ZZ male individual, and an XY male individual is to a ZW female individual. The mechanism behind this is yet unclear, but it is hypothesized that during its recent evolution, the XY-to-ZW transition occurred twice. [49] [50]
Clarias gariepinus uses both XX/XY and ZW/ZZ system within the species, with some populations using homomorphic XX/XY while others using heteromorphic ZW/ZZ. A population in Thailand appears to use both systems simultaneously, possibly because C. gariepinus were not native to Thailand, and were introduced from different source populations which resulted in a mixture. [51]
Multiple sex chromosomes like those of platypus also occurs in bony fish. [52] Some moths and butterflies have or . [53]
The Southern platyfish has a complex sex determination system involving 3 sex chromosomes and 4 autosomal alleles. [54] [55]
Gastrotheca pseustes has C-banding heteromorphism, meaning that both males and females have XY chromosomes, but their Y chromosomes are different on one or more C-bands. Eleutherodactylus maussi has a system. [56] [57]
See [58] for a review.
Sexual chromosome pairs can arise from an autosomal pair that, for various reasons, stopped recombination, allowing for their divergence. The rate at which recombination is suppressed, and therefore the rate of sex chromosome divergence, is very different across clades. [43]
In analogy with geological strata, historical events in the evolution of sex chromosomes are called evolutionary strata. The human Y-chromosome has had about 5 strata since the origin of the X and Y chromosomes about 300 Mya from a pair of autosomes. Each stratum was formed when a pseudoautosomal region (PAR) of the Y chromosome is inverted, stopping it from recombination with the X chromosome. Over time, each inverted region decays, possibly due to Muller's ratchet. [59] [60] Primate Y-chromosome evolution was rapid, with multiple inversions and shifts of the boundary of PAR. [61]
Among many species of the salamanders, the two chromosomes are only distinguished by a pericentric inversion, so that the banding pattern of the X chromosome is the same as that of Y, but with a region near the centromere reversed. (fig 7 [62] ) In some species, the X is pericentrically inverted and the Y is ancestral. In other species it is the opposite. (p. 15 [62] )
The gene content of the X chromosome is almost identical among placental mammals. This is hypothesized to be because the X inactivation means any change would cause serious disruption, thus subjecting it to strong purifying selection. Similarly, birds have highly conserved Z chromosomes. [50]
Neo-sex chromosomes are currently existing sex chromosomes that formed when an autosome pair fused to the previously existing sex chromosome pair. Following this fusion, the autosomal portion undergoes recombination suppression, allowing them to differentiate. Such systems have been observed in insects, reptiles, birds, and mammals. They are useful to the study of the evolution of Y chromosome degeneration and dosage compensation. [63] [64]
The sex-chromosome turnover is an evolutionary phenomenon where sex chromosomes disappear, or becomes autosomal, and autosomal chromosomes become sexual, repeatedly over evolutionary time. Some lineages have extensive turnover, but others don't. Generally, in an XY system, if the Y chromosome is degenerate, mostly different from the X chromosome, and has X dosage compensation, then turnover is unlikely. In particular, this applies to humans. [65] [58] [66]
The ZW and XY systems can evolve into to each other due to sexual conflict. [67]
It is an evolutionary puzzle why certain sex chromosomes remain homomorphic over millions of years, especially among lineages of fishes, amphibians, and nonavian reptiles. The fountain-of-youth model states that heteromorphy results from recombination suppression, and recombination suppression results from the male phenotype, not the sex chromosomes themselves. Therefore, if some XY sex-reversed females are fertile and adaptive under some circumstances, then the X and Y chromosomes would recombine in these individuals, preventing Y chromosome decay and maintaining long-term homomorphism. [68]
Sex reversal denotes a situation where the phenotypic sex is different from the genotypic sex. While in humans, sex reversal (such as the XX male syndrome) are often infertile, sex-reversed individuals of some species are fertile under some conditions. For example, some XY-individuals in population of Chinook salmon in the Columbia River became fertile females, producing YY sons. Since Chinook salmons have homomorphic sex chromosomes, such YY sons are healthy. When YY males mate with XX females, all their progeny would be XY male if grown under normal conditions. [69]
Support for the hypothesis is found in the common frog, for which XX males and XY males both suppresses sex chromosome recombination, but XX and XY females both recombine at the same rate. [70]
Many other sex-determination systems exist. In some species of reptiles, including alligators, some turtles, and the tuatara, sex is determined by the temperature at which the egg is incubated during a temperature-sensitive period. There are no examples of temperature-dependent sex determination (TSD) in birds. Megapodes had formerly been thought to exhibit this phenomenon, but were found to actually have different temperature-dependent embryo mortality rates for each sex. [71] For some species with TSD, sex determination is achieved by exposure to hotter temperatures resulting in the offspring being one sex and cooler temperatures resulting in the other. This type of TSD is called Pattern I. For others species using TSD, it is exposure to temperatures on both extremes that results in offspring of one sex, and exposure to moderate temperatures that results in offspring of the opposite sex, called Pattern II TSD. The specific temperatures required to produce each sex are known as the female-promoting temperature and the male-promoting temperature. [72] When the temperature stays near the threshold during the temperature sensitive period, the sex ratio is varied between the two sexes. [73] Some species' temperature standards are based on when a particular enzyme is created. These species that rely upon temperature for their sex determination do not have the SRY gene, but have other genes such as DAX1, DMRT1, and SOX9 that are expressed or not expressed depending on the temperature. [72] The sex of some species, such as the Nile tilapia, Australian skink lizard, and Australian dragon lizard, has an initial bias, set by chromosomes, but can later be changed by the temperature of incubation. [16]
It is unknown how exactly temperature-dependent sex determination evolved. [74] It could have evolved through certain sexes being more suited to certain areas that fit the temperature requirements. For example, a warmer area could be more suitable for nesting, so more females are produced to increase the amount that nest next season. [74] In amniotes, environmental sex determination preceded the genetically determined systems of birds and mammals; it is thought that a temperature-dependent amniote was the common ancestor of amniotes with sex chromosomes. [75]
There are other environmental sex determination systems including location-dependent determination systems as seen in the marine worm Bonellia viridis – larvae become males if they make physical contact with a female, and females if they end up on the bare sea floor. This is triggered by the presence of a chemical produced by the females, bonellin. [76] Some species, such as some snails, practice sex change: adults start out male, then become female. In tropical clownfish, the dominant individual in a group becomes female while the other ones are male, and bluehead wrasses ( Thalassoma bifasciatum ) are the reverse.
Clownfish live in colonies of several small undifferentiated fish and two large fish (male and female). The male and female are the only sexually mature fish to reproduce. Clownfish are protandrous hermaphrodites, which means after they mature into males, they eventually can transform into females. They develop undifferentiated until they are needed to fill a certain role in their environment, i.e., if they receive the social and environmental cues to do so. [77]
Some species, however, have no sex-determination system. Hermaphrodite species include the common earthworm and certain species of snails. A few species of fish, reptiles, and insects reproduce by parthenogenesis and are female altogether. There are some reptiles, such as the boa constrictor and Komodo dragon that can reproduce both sexually and asexually, depending on whether a mate is available. [78]
There are exceptional sex-determination systems, neither genetic nor environmental.
The Wolbachia genus of parasitic bacteria lives inside the cytoplasm of its host, and is vertically transmitted from parents to children. They primarily infect arthropods and nematodes. Different Wolbachia can determine the sex of its host by a variety of means. [79]
In some species, there is paternal genome elimination, where sons lose the entire genome from the father. [80]
Mitochondrial male sterility : In many flowering plants, the mitochondria can cause hermaphrodite individuals to be unable to father offsprings, effectively turning them into exclusive females. This is a form of mother’s curse. It is an evolutionarily adaptive strategy for mitochondria as mitochondrial inheritance is exclusively from mother to child. [80] The first published case of mitochondrial male sterility among metazoan was reported in 2022 in the hermaphroditic snail Physa acuta . [81]
In some flies and crustaceans, all offspring of a particular individual female are either exclusively male or exclusively female (monogeny). [80]
Sex determination systems may have evolved from mating type, which is a feature of microorganisms.
Chromosomal sex determination may have evolved early in the history of eukaryotes. [82] But in plants it has been suggested to have evolved recently. [83]
The accepted hypothesis of XY and ZW sex chromosome evolution in amniotes is that they evolved at the same time, in two different branches. [84] [85]
No genes are shared between the avian ZW and mammal XY chromosomes [26] and the chicken Z chromosome is similar to the human autosomal chromosome 9, rather than X or Y. This suggests not that the ZW and XY sex-determination systems share an origin but that the sex chromosomes are derived from autosomal chromosomes of the common ancestor of birds and mammals. In the platypus, a monotreme, the X1 chromosome shares homology with therian mammals, while the X5 chromosome contains an avian sex-determination gene, further suggesting an evolutionary link. [86]
However, there is some evidence to suggest that there could have been transitions between ZW and XY, such as in Xiphophorus maculatus , which have both ZW and XY systems in the same population, despite the fact that ZW and XY have different gene locations. [87] [88] A recent theoretical model raises the possibility of both transitions between the XY/XX and ZZ/ZW system and environmental sex determination [89] The platypus' genes also back up the possible evolutionary link between XY and ZW, because they have the DMRT1 gene possessed by birds on their X chromosomes. [90] Regardless, XY and ZW follow a similar route. All sex chromosomes started out as an original autosome of an original amniote that relied upon temperature to determine the sex of offspring. After the mammals separated, the reptile branch further split into Lepidosauria and Archosauromorpha. These two groups both evolved the ZW system separately, as evidenced by the existence of different sex chromosomal locations. [85] In mammals, one of the autosome pair, now Y, mutated its SOX3 gene into the SRY gene, causing that chromosome to designate sex. [85] [90] [91] After this mutation, the SRY-containing chromosome inverted and was no longer completely homologous with its partner. The regions of the X and Y chromosomes that are still homologous to one another are known as the pseudoautosomal region. [92] Once it inverted, the Y chromosome became unable to remedy deleterious mutations, and thus degenerated. [85] There is some concern that the Y chromosome will shrink further and stop functioning in ten million years: but the Y chromosome has been strictly conserved after its initial rapid gene loss. [93] [94]
There are some vertebrate species, such as the medaka fish, that evolved sex chromosomes separately; their Y chromosome never inverted and can still swap genes with the X. These species' sex chromosomes are relatively primitive and unspecialized. Because the Y does not have male-specific genes and can interact with the X, XY and YY females can be formed as well as XX males. [16] Non-inverted Y chromosomes with long histories are found in pythons and emus, each system being more than 120 million years old, suggesting that inversions are not necessarily an eventuality. [80] XO sex determination can evolve from XY sex determination with about 2 million years.[ clarification needed ] [95]
Sex is the biological trait that determines whether a sexually reproducing organism produces male or female gametes. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent. By convention, organisms that produce smaller, more mobile gametes are called male, while organisms that produce larger, non-mobile gametes are called female. An organism that produces both types of gamete is hermaphrodite.
The XY sex-determination system is a sex-determination system present in many mammals, including humans, some insects (Drosophila), some snakes, some fish (guppies), and some plants.
The Y chromosome is one of two sex chromosomes in therian mammals and other organisms. Along with the X chromosome, it is part of the XY sex-determination system, in which the Y is the sex-determining chromosome because the presence of the Y chromosome causes offspring produced in sexual reproduction to be of male sex. In mammals, the Y chromosome contains the SRY gene, which triggers development of male gonads. The Y chromosome is passed only from male parents to male offspring.
Haldane's rule is an observation about the early stage of speciation, formulated in 1922 by the British evolutionary biologist J. B. S. Haldane, that states that if — in a species hybrid — only one sex is inviable or sterile, that sex is more likely to be the heterogametic sex. The heterogametic sex is the one with two different sex chromosomes; in therian mammals, for example, this is the male.
Sexual differentiation is the process of development of the sex differences between males and females from an undifferentiated zygote. Sex determination is often distinct from sex differentiation; sex determination is the designation for the development stage towards either male or female, while sex differentiation is the pathway towards the development of the phenotype.
Sex-determining region Y protein (SRY), or testis-determining factor (TDF), is a DNA-binding protein encoded by the SRY gene that is responsible for the initiation of male sex determination in therian mammals. SRY is an intronless sex-determining gene on the Y chromosome. Mutations in this gene lead to a range of disorders of sex development with varying effects on an individual's phenotype and genotype.
Dosage compensation is the process by which organisms equalize the expression of genes between members of different biological sexes. Across species, different sexes are often characterized by different types and numbers of sex chromosomes. In order to neutralize the large difference in gene dosage produced by differing numbers of sex chromosomes among the sexes, various evolutionary branches have acquired various methods to equalize gene expression among the sexes. Because sex chromosomes contain different numbers of genes, different species of organisms have developed different mechanisms to cope with this inequality. Replicating the actual gene is impossible; thus organisms instead equalize the expression from each gene. For example, in humans, female (XX) cells randomly silence the transcription of one X chromosome, and transcribe all information from the other, expressed X chromosome. Thus, human females have the same number of expressed X-linked genes per cell as do human males (XY), both sexes having essentially one X chromosome per cell, from which to transcribe and express genes.
Male is the sex of an organism that produces the gamete known as sperm, which fuses with the larger female gamete, or ovum, in the process of fertilisation. A male organism cannot reproduce sexually without access to at least one ovum from a female, but some organisms can reproduce both sexually and asexually. Most male mammals, including male humans, have a Y chromosome, which codes for the production of larger amounts of testosterone to develop male reproductive organs.
XX male syndrome, also known as de la Chapelle syndrome, is a rare condition in which an individual with a 46,XX karyotype develops a male phenotype. Synonyms for XX male syndrome include 46,XX testicular difference of sex development
The XO sex-determination system is a system that some species of insects, arachnids, and mammals use to determine the sex of offspring. In this system, there is only one sex chromosome, referred to as X. Males only have one X chromosome (XO), while females have two (XX). The letter O signifies the lack of a Y chromosome. Maternal gametes always contain an X chromosome, so the sex of the animals' offspring depends on whether a sex chromosome is present in the male gamete. Its sperm normally contains either one X chromosome or no sex chromosomes at all.
The ZW sex-determination system is a chromosomal system that determines the sex of offspring in birds, some fish and crustaceans such as the giant river prawn, some insects, the schistosome family of flatworms, and some reptiles, e.g. majority of snakes, lacertid lizards and monitors, including Komodo dragons. It is also present in some plants, where it has probably evolved independently on several occasions. The letters Z and W are used to distinguish this system from the XY sex-determination system. In the ZW system, females have a pair of dissimilar ZW chromosomes, and males have two similar ZZ chromosomes.
In embryology, the genital ridge is the developmental precursor to the gonads. The genital ridge initially consists mainly of mesenchyme and cells of underlying mesonephric origin. Once oogonia enter this area they attempt to associate with these somatic cells. Development proceeds and the oogonia become fully surrounded by a layer of cells.
Gonadal dysgenesis is classified as any congenital developmental disorder of the reproductive system characterized by a progressive loss of primordial germ cells on the developing gonads of an embryo. One type of gonadal dysgenesis is the development of functionless, fibrous tissue, termed streak gonads, instead of reproductive tissue. Streak gonads are a form of aplasia, resulting in hormonal failure that manifests as sexual infantism and infertility, with no initiation of puberty and secondary sex characteristics.
Sex chromosomes are chromosomes that carry the genes that determine the sex of an individual. The human sex chromosomes are a typical pair of mammal allosomes. They differ from autosomes in form, size, and behavior. Whereas autosomes occur in homologous pairs whose members have the same form in a diploid cell, members of an allosome pair may differ from one another.
Sexual differentiation in humans is the process of development of sex differences in humans. It is defined as the development of phenotypic structures consequent to the action of hormones produced following gonadal determination. Sexual differentiation includes development of different genitalia and the internal genital tracts and body hair plays a role in sex identification.
The western clawed frog is a species of frog in the family Pipidae, also known as tropical clawed frog. It is the only species in the genus Xenopus to have a diploid genome. Its genome has been sequenced, making it a significant model organism for genetics that complements the related species Xenopus laevis, a widely used vertebrate model for developmental biology. X. tropicalis also has a number of advantages over X. laevis in research, such as a much shorter generation time, smaller size, and a larger number of eggs per spawn.
The ZO sex-determination system is a system that determines the sex of offspring in several moths. In those species, there is one sex chromosome, Z. Males have two Z chromosomes, whereas females have one Z. Males are ZZ, while females are ZO.
Sex reversal is a biological process whereby the pathway directed towards the already determined-sex fate is flipped towards the opposite sex, creating a discordance between the primary sex fate and the sex phenotype expressed. The process of sex reversal occurs during embryonic development or before gonad differentiation. In GSD species, sex reversal means that the sexual phenotype is discordant with the genetic/chromosomal sex. In TSD species, sex reversal means that the temperature/conditions that usually trigger the differentiation towards one sexual phenotype are producing the opposite sexual phenotype.
Jennifer Ann Marshall Graves is an Australian geneticist. She is Distinguished Professor within the La Trobe Institute for Molecular Science, La Trobe University, Australia and Professor Emeritus of the Australian National University.
The evolution of sex-determining mechanisms, characterized by the evolutionary transition to genetic sex determination or temperature-dependent sex determination from the opposite mechanism, has frequently and readily occurred among multiple taxa across a transitionary continuum.