Archosauromorphs Temporal range: Middle Permian records Possible | |
---|---|
Row 1: Sharovipteryx mirabilis and Crocodylus porosus Row 2: Pardalotus punctatus and Hyperodapedon fischeri Row 3: Tanystropheus longobardicus | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Reptilia |
Clade: | Archelosauria |
Clade: | Archosauromorpha von Huene, 1946 |
Subgroups | |
|
Archosauromorpha (Greek for "ruling lizard forms") is a clade of diapsid reptiles containing all reptiles more closely related to archosaurs (such as crocodilians and dinosaurs, including birds) rather than lepidosaurs (such as tuataras, lizards, and snakes). [1] Archosauromorphs first appeared during the late Middle Permian or Late Permian, [2] though they became much more common and diverse during the Triassic period. [3]
Although Archosauromorpha was first named in 1946, its membership did not become well-established until the 1980s. Currently Archosauromorpha encompasses four main groups of reptiles: the stocky, herbivorous allokotosaurs and rhynchosaurs, the hugely diverse Archosauriformes, and a polyphyletic grouping of various long-necked reptiles including Protorosaurus , tanystropheids, and Prolacerta . Other groups including pantestudines (turtles and their extinct relatives) and the semiaquatic choristoderes have also been placed in Archosauromorpha by some authors.
Archosauromorpha is one of the most diverse groups of reptiles, but its members can be united by several shared skeletal characteristics. These include laminae on the vertebrae, a posterodorsal process of the premaxilla, a lack of notochordal canals, and the loss of the entepicondylar foramen of the humerus. [1]
The term Archosauromorpha was first used by Friedrich von Huene in 1946 to refer to reptiles more closely related to archosaurs than to lepidosaurs. However, there was little consensus on ancient reptile relationships prior to the late 20th century, so the term Archosauromorpha was seldom used until many years after its creation.
The advent of cladistics helped to sort out at least some of the relationships within Reptilia, and it became clear that there was a split between the archosaur lineage and the lepidosaur lineage somewhere within the Permian, with certain reptiles clearly closer to archosaurs and others allied with lepidosaurs. Jacques Gauthier reused the term Archosauromorpha for the archosaur lineage at the 1982 annual meeting of the American Society of Zoologists, and later used it within his 1984 Ph.D. thesis. [4] Archosauromorpha, as formulated by Gauthier, included four main groups of reptiles: Rhynchosauria, "Prolacertiformes", "Trilophosauria", and Archosauria (now equivalent to the group Archosauriformes). Cladistic analyses created during the 1980s by Gauthier, Michael J. Benton, and Susan E. Evans implemented Gauthier's classification scheme within large studies of reptile relations. [5] [4] [6]
Michel Laurin (1991) defined Archosauromorpha as a node-based clade containing the most recent common ancestor of Prolacerta , Trilophosaurus , Hyperodapedon and all of its descendants. [7] David Dilkes (1998) formulated a more inclusive (and more common) definition of Archosauromorpha, defining it as a branch-based total group clade containing Protorosaurus and all other saurians that are more closely related to Protorosaurus than to Lepidosauria. [8] Gauthier, as an author for Phylonyms (2020), redefined Archosauromorpha as a node-based clade containing Gallus, Alligator, Mesosuchus, Trilophosaurus, Prolacerta, and Protorosaurus. The new name Pan-Archosauria was established for the broader total group of Archosauromorpha, similar to the definition of Dilkes (1998). [9]
In 2016, Martin Ezcurra named a subgroup of Archosauromorpha, Crocopoda ("crocodile feet"). Crocopoda is defined as all archosauromorphs more closely related to allokotosaurs (specifically Azendohsaurus and Trilophosaurus ), rhynchosaurs (specifically Rhynchosaurus ), or archosauriforms (specifically Proterosuchus) rather than Protorosaurus or tanystropheids (specifically Tanystropheus ). This group roughly corresponds to Laurin's definition of Archosauromorpha. [1]
Since the seminal studies of the 1980s, Archosauromorpha has consistently been found to contain four specific reptile groups, although the definitions and validity of the groups themselves have been questioned. The least controversial group is Rhynchosauria ("beak reptiles"), a monophyletic clade of stocky herbivores. Many rhynchosaurs had highly modified skulls, with beak-like premaxillary bones and wide heads.
Another group of archosauromorphs has traditionally been represented by Trilophosaurus, an unusual iguana-like herbivorous reptile quite different from the rhynchosaurs. Gauthier used the name "Trilophosauria" for this group, but a 2015 study offered an alternative name. This study found that Azendohsauridae, Triassic reptiles previously mistaken for "prosauropod" dinosaurs, were in fact close relatives of Trilophosaurus and the rest of Trilophosauridae. Trilophosaurids and azendohsaurids are now united under the group Allokotosauria ("strange reptiles"). [10] These two groups did not survive the end of the Triassic period, but the most famous group of archosauromorphs not only survived, but have continued to diversify and dominate beyond the Triassic-Jurassic extinction. These were the Archosauriformes, a diverse assortment of animals including the famous dinosaurs and pterosaurs. Two subclades of Archosauriformes survive to the present day: the semiaquatic crocodilians and the last of the feathered dinosaurs: birds. Gauthier used the name Archosauria to refer to what is now called the Archosauriformes; in modern studies, the name Archosauria has a more restricted definition that only includes the ancestors of crocodilians (i.e. Pseudosuchia) and birds (i.e. Avemetatarsalia).
The final unambiguous members of Archosauromorpha represent the most controversial group. These were the first archosauromorphs to appear, and can be characterized by their long necks, sprawling posture, and carnivorous habits. One name for the group, Protorosauria, is named after Protorosaurus, the oldest archosauromorph known from good remains. Another name, Prolacertiformes, is in reference to a different member, Prolacerta. Protorosauria/Prolacertiformes has had a complicated history, and many taxa have entered and left the group as paleontologists discover and re-evaluate reptiles of the Triassic. By far the most famous of these are tanystropheids such as Tanystropheus, known for having necks longer than their entire body. Other notable genera include Boreopricea , Pamelaria , and Macrocnemus, as well as strange gliding reptiles such as Sharovipteryx and Mecistotrachelos . A landmark 1998 study by David Dilkes completely deconstructed the concept of Prolacertiformes as a traditional monophyletic group (i.e. one whose members have a single common ancestor). He argued that Prolacerta was much closer to Archosauriformes than to other "prolacertiforms", invalidating the name. [8] Likewise, Pamelaria is now considered an allokotosaur, Macrocnemus is a tanystropheid, and Protorosaurus may be too basal ("primitive") to form a clade with any of its supposed close relatives. [1] As such, this final group of Archosauromorpha is generally considered paraphyletic or polyphyletic, and few modern studies use it.
Apart from these four groups, Archosauromorpha is sometimes considered to encompass several additional groups of reptiles. One of the most common additions is Choristodera, a group of semiaquatic reptiles with mysterious origins. Although choristodere fossils are only known from the Jurassic through the Miocene, it is theorized that they first appeared during the Permian alongside the earliest archosauromorphs. Choristoderes share numerous otherwise unique traits with archosauromorphs, but they share an equal or greater number of unique traits with lepidosauromorphs as well, so there is still some debate over their inclusion within either group. [6] [1] The chameleon- or tamandua-like drepanosaurs are also semi-regularly placed within Archosauromorpha, [8] although some studies have considered them to be part of a much more basal lineage of reptiles. [11] The aquatic thalattosaurs [6] and gliding kuehneosaurids [6] [11] are also irregularly considered archosauromorphs.
Genetic studies have found evidence that modern testudines (turtles and tortoises) are more closely related to crocodilians than to lizards. [12] [13] If this evidence is accurate, then turtles are part of basal Archosauromorpha. Likewise, extinct turtle relatives known as Pantestudines would also fall within Archosauromorpha. Some geneticists have proposed a name to refer to reptiles within the group formed by relatives of turtles and archosaurs. This name is the clade Archelosauria . Since Pantestudines may encompass the entire aquatic reptile order Sauropterygia, this means that Archosauromorpha (as Archelosauria) may be a much wider group than commonly believed. [14] However, anatomical data disagrees with this genetic evidence, instead placing Pantestudines within Lepidosauromorpha [15] but many modern studies have supported Archelosauria. Several recent studies place sauropterygians within Archosauromorpha group, forming a large clade including Ichthyosauromorpha and Thalattosauria as opposed to the Pantestudine relations. [16] [17] [18]
Although the most diverse clade of living archosauromorphs are birds, early members of the group were evidently reptilian, superficially similar to modern lizards. When archosauromorphs first appeared in the fossil record in the Permian, they were represented by long-necked, lightly built sprawling reptiles with moderately long, tapering snouts. This body plan, similar to that of modern monitor lizards, is also shared by Triassic archosauromorphs such as tanystropheids and Prolacerta. Other early groups such as trilohpsaurids, azendohsaurids, and rhynchosaurs deviate from this body plan by evolving into stockier forms with semi-erect postures and higher metabolisms. The archosauriforms went to further extremes of diversity, encompassing giant sauropod dinosaurs, flying pterosaurs and birds, semiaquatic crocodilians, phytosaurs, and proterochampsians, and apex predators such as erythrosuchids, pseudosuchians, and theropod dinosaurs. Despite the staggering diversity of archosauromorphs, they can still be united as a clade thanks to several subtle skeletal features. [1]
Most archosauromorphs more "advanced" than Protorosaurus possessed an adaptation of the premaxilla (tooth-bearing bone at the tip of the snout) known as a posterodorsal or postnarial process. This was a rear-facing branch of bone that stretched up below and behind the external nares (nostril holes) to contact the nasal bones on the upper edge of the snout. A few advanced archosauriforms reacquired the plesiomorphic ("primitive") state present in other reptiles, that being a short or absent posterodorsal process of the premaxilla, with the rear edge of the nares formed primarily by the maxilla bones instead. As for the nares themselves, they were generally large and oval-shaped, positioned high and close to the midline of the skull. [4]
Many early archosauromorphs, including Protorosaurus, tanystropheids, Trilophosaurus, and derived rhynchosaurs, have a blade-like sagittal crest on the parietal bones at the rear part of the skull roof, between a pair of holes known as the supratemporal (or upper temporal) fenestrae. However, in other allokotosaurs, the basal rhynchosaur Mesosuchus , and more crownward archosauromorphs, the sagittal crest is weakly differentiated, although the inner edge of each supratemporal fenestra still possessed a depressed basin of bone known as a supratemporal fossa. Ezcurra (2016) argued that presence of supratemporal fossae and an absence or poor development of the sagittal crest could be used to characterize Crocopoda. He also noted that in almost all early archosauromorphs (and some choristoderes), the parietal bones have an additional lowered area which extends transversely (from left to right) behind the supratemporal fenestrae and sagittal crest (when applicable). [1]
The lower temporal fenestra is not fully enclosed in early archosauromorphs (and choristoderes) due to alterations to the structure of the quadratojugal bone at the rear lower corner of the skull. This bone is roughly L-shaped in these taxa, with a tall dorsal process (vertical branch), a short anterior process (forward branch), and a tiny or absent posterior process (rear branch). The bones surrounding the quadratojugal also reconfigure to offset the changes to the quadratojugal. For example, the lower branch of the squamosal bone is shortened to offset the tall dorsal process of quadratojugal which connects to it. On the other hand, the rear branch jugal bone lengthens to fill some of the space left by the shortening of the anterior process of the quadratojugal. [6] In archosauriforms, the jugal even re-encloses the lower temporal fenestra. The stapes are long, thin, and solid, without a perforating hole (stapedial foramen) present in the more robust stapes of other reptiles. [6]
In conjunction with their long, S-shaped necks, early archosauromorphs had several adaptations of the cervical (neck) vertebrae, and usually the first few dorsal (back) vertebrae as well. The centrum (main body) of each vertebra is parallelogram-shaped, with a front surface typically positioned higher than the rear surface. [1] The transverse processes (rib facets) of these vertebrae extend outwards to a greater extent than in other early reptiles. In many long-necked archosauromorphs, the rib facets are slanted, connecting to cervical ribs that are often long, thin, and dichocephalous (two-headed). [19]
Thin, plate-like ridges known as laminae develop to connect the vertebral components, sloping down from the elongated transverse processes to the centra. Laminae are practically unique to archosauromorphs, being present even in the earliest Permian genera such as Aenigmastropheus and Eorasaurus. However, they are also known to occur in the bizarre semiaquatic reptile Helveticosaurus , [3] as well as the biarmosuchian synapsid Hipposaurus . [20] In all adult archosauromorphs with the exception of Aenigmastropheus, the vertebrae lack notochordal canals, holes which perforate the centra. This also sets the archosauromorphs apart from most other Permian and Triassic reptiles. [7] [3]
The humerus (upper arm bone) is solid in archosauromorphs, completely lacking a hole near the elbow known as the entepicondylar foramen. This hole, present in most other tetrapods, is also absent in choristoderes yet not fully enclosed in some proterosuchids. In many advanced archosauromorphs, the capitulum and trochlea (elbow joints) of the humerus are poorly developed. Early archosauromorphs retain well-developed elbow joints, but all archosauromorphs apart from Aenigmastropheus have a trochlea (ulna joint) which is shifted towards the outer surface of the humerus, rather than the midpoint of the elbow as in other reptiles. In conjunction with this shift, the olecranon process of the ulna is poorly developed in archosauromorphs apart from Aenigmastropheus and Protorosaurus. [1]
The ankle bones of archosauromorphs tend to acquire complex structures and interactions with each other, and this is particularly the case with the large proximal tarsal bones: the astragalus and calcaneum. The calcaneum, for example, has a tube-like outer extension known as a calcaneal tuber in certain archosauromorphs. This tuber is particularly prominent in the ancient relatives of crocodylians, but it first appeared earlier at the last common ancestor of allokotosaurs, rhynchosaurs, and archosauriforms. The presence of a calcaneal tuber (sometimes known as a lateral tuber of the calcaneum) is a synapomorphy of the group Crocopoda, and is also responsible for its name. [1]
The cladogram shown below follows the most likely result found by an analysis of turtle relationships using both fossil and genetic evidence by M.S. Lee, in 2013. [21]
Crown Reptilia/ |
| ||||||||||||||||||
Sauria |
The following cladogram is based on a large analysis of archosauriforms published by M.D. Ezcurra in 2016. [1]
Sauria |
| ||||||||||||||||||||||||||||||
Dinocephalosaurus is a genus of long necked, aquatic protorosaur that inhabited the Triassic seas of China. The genus contains the type and only known species, D. orientalis, which was named by Chun Li in 2003. Unlike other long-necked protorosaurs, Dinocephalosaurus convergently evolved a long neck not through elongation of individual neck vertebrae, but through the addition of neck vertebrae that each had a moderate length. As indicated by phylogenetic analyses, it belonged in a separate lineage that also included at least its closest relative Pectodens, which was named the Dinocephalosauridae in 2021. Like tanystropheids, however, Dinocephalosaurus probably used its long neck to hunt, utilizing the fang-like teeth of its jaws to ensnare prey; proposals that it employed suction feeding have not been universally accepted. It was probably a marine animal by necessity, as suggested by the poorly-ossified and paddle-like limbs which would have prevented it from going ashore.
Archosauriformes is a clade of diapsid reptiles encompassing archosaurs and some of their close relatives. It was defined by Jacques Gauthier (1994) as the clade stemming from the last common ancestor of Proterosuchidae and Archosauria. Phil Senter (2005) defined it as the most exclusive clade containing Proterosuchus and Archosauria. Gauthier as part of the Phylonyms (2020) defined the clade as the last common ancestor and all descendants of Gallus, Alligator, and Proterosuchus. Archosauriforms are a branch of archosauromorphs which originated in the Late Permian and persist to the present day as the two surviving archosaur groups: crocodilians and birds.
Tanystropheus is an extinct genus of archosauromorph reptile which lived during the Triassic Period in Europe, Asia, and North America. It is recognisable by its extremely elongated neck, longer than the torso and tail combined. The neck was composed of 13 vertebrae strengthened by extensive cervical ribs. Tanystropheus is one of the most well-described non-archosauriform archosauromorphs, known from numerous fossils, including nearly complete skeletons. Some species within the genus may have reached a total length of 6 meters (20 ft), making Tanystropheus the longest non-archosauriform archosauromorph as well. Tanystropheus is the namesake of the family Tanystropheidae, a clade collecting many long-necked Triassic archosauromorphs previously described as "protorosaurs" or "prolacertiforms".
Protorosaurus is an extinct genus of reptile. Members of the genus lived during the late Permian period in what is now Germany and Great Britain. Once believed to have been an ancestor to lizards, Protorosaurus is now known to be one of the oldest and most primitive members of Archosauromorpha, the group that would eventually lead to archosaurs such as crocodilians and dinosaurs.
Proterosuchus is an extinct genus of archosauriform reptiles that lived during the Early Triassic. It contains three valid species: the type species P. fergusi and the referred species P. alexanderi and P. goweri. All three species lived in what is now South Africa. The genus was named in 1903 by the South African paleontologist Robert Broom. The genus Chasmatosaurus is a junior synonym of Proterosuchus.
Tasmaniosaurus is an extinct genus of archosauromorph reptile known from the Knocklofty Formation of West Hobart, Tasmania, Australia. The type species is T. triassicus. This genus is notable not only due to being one of the most complete Australian Triassic reptiles known, but also due to being a very close relative of Archosauriformes. Once believed to be a proterosuchid, this taxon is now believed to have been intermediate between advanced non-archosauriform archosauromorphs such as Prolacerta, and basal archosauriforms such as Proterosuchus. Features traditionally used to define Archosauria and later Archosauriformes, such as the presence of an antorbital fenestra and serrated teeth, are now known to have evolved prior to those groups due to their presence in Tasmaniosaurus.
Teraterpeton is an extinct genus of trilophosaurid archosauromorphs. It is known from a partial skeleton from the Late Triassic Wolfville Formation of Nova Scotia, described in 2003. It has many unique features seen in no other related form, including an elongated, toothless snout and large openings for the nostrils. Because of this, Teraterpeton was originally placed in its own family, Teraterpetidae, related to Trilophosaurus. Newer studies generally place it within Trilophosauridae.
Proterochampsia is a clade of early archosauriform reptiles from the Triassic period. It includes the Proterochampsidae and probably also the Doswelliidae. Nesbitt (2011) defines Proterochampsia as a stem-based taxon that includes Proterochampsa barrionuevoi and all forms more closely related to it than Euparkeria capensis, Erythrosuchus africanus, Passer domesticus, or Crocodylus niloticus. Therefore, the inclusion of Doswelliidae in it is dependent upon whether Doswellia and Proterochampsa form a monophyletic group to the exclusion of Archosauria and other related groups.
Jesairosaurus is an extinct genus of early archosauromorph reptile known from the Illizi Province of Algeria. It is known from a single species, Jesairosaurus lehmani. Although a potential relative of the long-necked tanystropheids, this lightly-built reptile could instead be characterized by its relatively short neck as well as various skull features.
Protorosauria is an extinct, likely paraphyletic group of basal archosauromorph reptiles from the latest Middle Permian to the end of the Late Triassic of Asia, Europe and North America. It was named by the English anatomist and paleontologist Thomas Henry Huxley in 1871 as an order, originally to solely contain Protorosaurus. Other names which were once considered equivalent to Protorosauria include Prolacertiformes and Prolacertilia.
Prolacerta is a genus of archosauromorph from the lower Triassic of South Africa and Antarctica. The only known species is Prolacerta broomi. Prolacerta was a small and slender reptile, with a rather long neck, low skull, and serrated teeth. It would have resembled a modern monitor lizard at a quick glance, though this is an example of convergent evolution as opposed to close affinities.
Pamelaria is an extinct genus of allokotosaurian archosauromorph reptile known from a single species, Pamelaria dolichotrachela, from the Middle Triassic of India. Pamelaria has sprawling legs, a long neck, and a pointed skull with nostrils positioned at the very tip of the snout. Among early archosauromorphs, Pamelaria is most similar to Prolacerta from the Early Triassic of South Africa and Antarctica. Both have been placed in the family Prolacertidae. Pamelaria, Prolacerta, and various other Permo-Triassic reptiles such as Protorosaurus and Tanystropheus have often been placed in a group of archosauromorphs called Protorosauria, which was regarded as one of the most basal group of archosauromorphs. However, more recent phylogenetic analyses indicate that Pamelaria and Prolacerta are more closely related to Archosauriformes than are Protorosaurus, Tanystropheus, and other protorosaurs, making Protorosauria a polyphyletic grouping.
Eorasaurus is an extinct genus of archosauromorph reptile known from the middle late Permian of Tatarstan, European Russia. It contains a single species, Eorasaurus olsoni. When originally described by Sennikov (1997), Eorasaurus was identified as an early archosauromorph and assigned to the family Protorosauridae, Ezcurra et al. (2014) and Ezcurra (2016) later reclassified Eorasaurus and placed it within the group Archosauriformes. Eorasaurus is based solely on scant fossil material from the neck region, and is thus considered an unstable taxon in phylogenetic analyses. If Eorasaurus is an archosauriform, it would be the oldest known member of the group and would pre-date the previous record holder.
Aenigmastropheus is an extinct genus of early archosauromorph reptiles known from the middle Late Permian Usili Formation of Songea District, southern Tanzania. It contains a single species, Aenigmastropheus parringtoni, known solely from UMZC T836, a partial postcranial skeleton of a mature individual. It was collected in 1933, and first described in 1956, as a "problematic reptile" due to its unique morphology. Therefore, a binomial name was erected for this specimen in 2014. Aenigmastropheus was probably fully terrestrial.
Prolacertidae is an extinct family of archosauromorph reptiles that lived during the Early Triassic epoch. It was named in 1935 by the British palaeontologist Francis Rex Parrington to include the species Prolacerta broomi of South Africa and Antarctica. In 1979 a second species, Kadimakara australiensis, was described from Australia. Several other genera, such as Macrocnemus, Pamelaria and Prolacertoides, have also been assigned to this family in the past, but these have been placed elsewhere by later studies, leaving Prolacerta and Kadimakara as the only well-supported members.
Allokotosauria is a clade of early archosauromorph reptiles from the Middle to Late Triassic known from Asia, Africa, North America and Europe. Allokotosauria was first described and named when a new monophyletic grouping of specialized herbivorous archosauromorphs was recovered by Sterling J. Nesbitt, John J. Flynn, Adam C. Pritchard, J. Michael Parrish, Lovasoa Ranivoharimanana and André R. Wyss in 2015. The name Allokotosauria is derived from Greek meaning "strange reptiles" in reference to unexpected grouping of early archosauromorph with a high disparity of features typically associated with herbivory.
Ozimek is a genus of sharovipterygid archosauromorph reptile, known from Late Triassic deposits in Poland and closely related to the Kyrgyzstani Sharovipteryx. It contains one species, O. volans, named in 2016 by Jerzy Dzik and Tomasz Sulej. Like Sharovipteryx, Ozimek had long, slender limbs with the hindlimbs longer than the forelimbs; the hindlimbs likely supported gliding membranes as fossilized in Sharovipteryx. Another unusual characteristic was the shoulder girdle, where the massive coracoids formed a shield-like structure covering the bottom of the shoulder region that would have limited mobility. In other respects, such as its long neck, it was a typical member of the non-natural grouping Protorosauria. Phylogenetic analysis has indicated that it, possibly along with Sharovipteryx, may have been an unusual member of the protorosaur group Tanystropheidae, although further study of its anatomy is needed to resolve its precise relationships.
Kadimakara is an extinct genus of early archosauromorph reptile from the Arcadia Formation of Queensland, Australia. It was seemingly a very close relative of Prolacerta, a carnivorous reptile which possessed a moderately long neck. The generic name Kadimakara references prehistoric creatures from Aboriginal myths which may have been inspired by ice-age megafauna. The specific name K. australiensis relates to the fact that it was found in Australia. Prolacerta and Kadimakara were closely related to the Archosauriformes, a successful group which includes archosaurs such as crocodilians, pterosaurs, and dinosaurs.
Boreopricea is an extinct genus of archosauromorph reptile from the Early Triassic of arctic Russia. It is known from a fairly complete skeleton discovered in a borehole on Kolguyev Island, though damage to the specimen and loss of certain bones has complicated study of the genus. Boreopricea shared many similarities with various other archosauromorphs, making its classification controversial. Various studies have considered it a close relative of Prolacerta, tanystropheids, both, or neither. Boreopricea is unique among early archosauromorphs due to possessing contact between the jugal and squamosal bones at the rear half of the skull.
Elessaurus is an extinct genus of archosauromorph from the Early Triassic of Brazil. It contains a single species, Elessaurus gondwanoccidens. It possessed a variety of features common to basal archosauromorphs, particularly basal tanystropheids such as Macrocnemus. However, it is uncertain whether Elessaurus was a particularly close relative of tanystropheids, and it might instead be closer to other major archosauromorph clades. The genus name refers to "Elessar", an alternate name of the character Aragorn from J.R.R. Tolkien's Lord of the Rings trilogy.