Captorhinidae

Last updated

Captorhinids
Temporal range: Pennsylvanian - Lopingian 300–252  Ma
Captorhinus aguti p.jpg
Fossil Captorhinus specimens
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Eureptilia
Family: Captorhinidae
Case, 1911
Type species
Captorhinus aguti
Genera

See text

Synonyms

Romeriidae Price, 1937

Captorhinidae is an extinct family of tetrapods, typically considered primitive reptiles, known from the late Carboniferous to the Late Permian. They had a cosmopolitan distribution across Pangea.

Contents

Description

Skull of Captorhinus kierani Captorhinus kierani.jpg
Skull of Captorhinus kierani

Captorhinids are a clade of small to very large lizard-like animals that date from the Late Carboniferous through the Permian. Their skulls were much stronger than those of their relatives, the protorothyridids, and had teeth that were better able to deal with tough plant material. The postcranial skeleton is similar to those of seymouriamorphs and diadectomorphs; these animals were grouped together with the captorhinids in the order Cotylosauria as the first reptiles in the early 20th century, [1] but are now usually regarded as stem-amniotes no closer to reptiles than to mammals. Captorhinids have broad, robust skulls that are generally triangular in shape when seen in dorsal view. The premaxillae are characteristically downturned. The largest captorhinid, the herbivorous Moradisaurus , could reach an estimated snout-vent length of 2 meters (6.5 feet). [2] Early, smaller forms possessed single rows of teeth, and were likely carnivorous or omnivorous, while the larger, more derived captorhinids belonging to the subfamily Moradisaurinae were herbivorous and developed multiple (up to 11) rows of teeth in the jaws alongside propalinal (back and forth) jaw motion, which created an effective apparatus for grinding and shredding plant matter. [3]

Histological and SEM analysis of captorhinid tail vertebrae concluded in a 2018 study that captorhinids were the first amniotes to develop caudal autotomy as a defensive function. In studied specimens a split line is present in certain caudal vertebrae that is similar to those found in modern reptiles that perform caudal autonomy. This behaviour represented significant evolutionary benefit for the animals, allowing for escape and distracting predators, as well as minimizing blood loss at an injury site. [4]

Discovery and history

An impression of Labidosaurikos Labidos1.jpg
An impression of Labidosaurikos

Euconcordia cunninghami is thought to be the basalmost known member of Captorhinidae. A phylogenic study of primitive reptile relationships by Muller & Reisz in 2006 recovered Thuringothyris as a sister taxon of the Captorhinidae. [5] The same results were obtained in later phylogenic analyses. [6] [7]

Captorhinidae contains a single subfamily, the Moradisaurinae. Moradisaurinae was named and assigned to the family Captorhinidae by A. D. Ricqlès and P. Taquet in 1982. Moradisaurinae was defined as "all captorhinids more closely related to Moradisaurus than to Captorhinus ". The moradisaurines inhabited what is now China, Morocco, Niger, Russia, Texas and Oklahoma. [6]

Captorhinids were once thought to be the ancestors of turtles. The Middle Permian reptile Eunotosaurus from South Africa was seen as the "missing link" between cotylosaurs and chelonians throughout much of the early 20th century. [8] However, more recent fossil finds have shown that Eunotosaurus was either a parareptile or a diapsid, and therefore unrelated to captorhinids. [9] [10]

Classification

Taxonomy

The following taxonomy follows Reisz et al., 2011 and Sumida et al., 2010 unless otherwise noted. [6] [7]

Phylogeny

The cladogram below follows the topology from a 2011 analysis by paleontologists Robert R. Reisz, Jun Liu, Jin-Ling Li and Johannes Müller. [6]

Paleothyris

Thuringothyris

 Captorhinidae 

Concordia

Rhiodenticulatus

Romeria

Protocaptorhinus

Saurorictus

  Captorhinus  

C. laticeps

C. aguti

C. magnus

Captorhinikos

Labidosaurus

 Moradisaurinae 

Labidosaurikos

Moradisaurus

Rothianiscus

Gansurhinus

Simões et al. (2022) recovered captorhinids as stem-amniotes instead, as the sister group to Protorothyris archeri , while the clade including captorhinids and P. archeri was recovered as the sister group to Araeoscelidia. A cladogram from that study is shown below. [16] Using the same data matrix, Klembara et al. (2023) found a similar result. [17]

Seymouria

Amniota

Limnoscelis paludis

Diadectes

Orobates pabsti

Crown  Amniota

Sauropsida

Synapsida

Clade A

Araeoscelidia

Protorothyris archeri

Captorhinidae

Captorhinus aguti

Labidosaurus hamatus

Euconcordia cunninghami

Protocaptorhinus pricei

Related Research Articles

<span class="mw-page-title-main">Anapsid</span> Subclass of reptiles

An anapsid is an amniote whose skull lacks one or more skull openings near the temples. Traditionally, the Anapsida are the most primitive subclass of amniotes, the ancestral stock from which Synapsida and Diapsida evolved, making anapsids paraphyletic. It is however doubtful that all anapsids lack temporal fenestra as a primitive trait, and that all the groups traditionally seen as anapsids truly lacked fenestra.

<span class="mw-page-title-main">Amniote</span> Clade of tetrapods including reptiles, birds and mammals

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibian ancestors during the Carboniferous period and further diverged into two groups, namely the sauropsids and synapsids. They are distinguished from the other living tetrapod clade — the non-amniote lissamphibians — by the development of three extraembryonic membranes, thicker and keratinized skin, and costal respiration.

<span class="mw-page-title-main">Diapsid</span> Clade of amniote tetrapods with two holes in each side of their skulls

Diapsids are a clade of sauropsids, distinguished from more primitive eureptiles by the presence of two holes, known as temporal fenestrae, in each side of their skulls. The group first appeared about three hundred million years ago during the late Carboniferous period. All diapsids other than the most primitive ones in the clade Araeoscelidia are sometimes placed into the clade Neodiapsida. The diapsids are extremely diverse, and include birds and all modern reptile groups, including turtles, which were historically thought to lie outside the group. Although some diapsids have lost either one hole (lizards), or both holes, or have a heavily restructured skull, they are still classified as diapsids based on their ancestry. At least 17,084 species of diapsid animals are extant: 9,159 birds, and 7,925 snakes, lizards, tuatara, turtles, and crocodiles.

<span class="mw-page-title-main">Eureptilia</span> Clade of reptiles

Eureptilia is one of the two major subgroups of the clade Sauropsida, the other one being Parareptilia. Eureptilia includes Diapsida, as well as a number of primitive Permo-Carboniferous forms previously classified under Anapsida, in the old order "Cotylosauria".

<span class="mw-page-title-main">Reptiliomorpha</span> Clade of reptile-like animals

Reptiliomorpha is a clade containing the amniotes and those tetrapods that share a more recent common ancestor with amniotes than with living amphibians (lissamphibians). It was defined by Michel Laurin (2001) and Vallin and Laurin (2004) as the largest clade that includes Homo sapiens, but not Ascaphus truei. Laurin and Reisz (2020) defined Pan-Amniota as the largest total clade containing Homo sapiens, but not Pipa pipa, Caecilia tentaculata, and Siren lacertina.

<span class="mw-page-title-main">Diadectomorpha</span> Extinct clade of tetrapods

Diadectomorpha is a clade of large tetrapods that lived in Euramerica during the Carboniferous and Early Permian periods and in Asia during Late Permian (Wuchiapingian), They have typically been classified as advanced reptiliomorphs positioned close to, but outside of the clade Amniota, though some recent research has recovered them as the sister group to the traditional Synapsida within Amniota, based on inner ear anatomy and cladistic analyses. They include both large carnivorous and even larger herbivorous forms, some semi-aquatic and others fully terrestrial. The diadectomorphs seem to have originated during late Mississippian times, although they only became common after the Carboniferous rainforest collapse and flourished during the Late Pennsylvanian and Early Permian periods.

<span class="mw-page-title-main">Protorothyrididae</span> Family of reptiles

Protorothyrididae is an extinct family of small, lizard-like reptiles belonging to Eureptilia. Their skulls did not have fenestrae, like the more derived diapsids. Protorothyridids lived from the Late Carboniferous to Early Permian periods, in what is now North America. Many genera of primitive reptiles were thought to be protorothyridids. Brouffia, Coelostegus, Paleothyris and Hylonomus, for example, were found to be more basal eureptiles in Muller and Reisz (2006), making the family as historically defined paraphyletic, though three genera, Protorothyris, Anthracodromeus, and Cephalerpeton, were recovered as a monophyletic group. Anthracodromeus, Paleothyris, and Protorothyris were recovered as a monophyletic group in Ford and Benson (2020), who recovered them as more derived than captorhinids and Hylonomus, but less so than araeoscelidians. Anthracodromeus is the earliest known reptile to display adaptations to climbing. The majority of phylogenetic studies recover protorothyridids as basal members of Eureptilia; however, Simões et al. (2022) recover them as stem-amniotes instead.

<i>Seymouria</i> Extinct genus of reptile-like amphibians

Seymouria is an extinct genus of seymouriamorph from the Early Permian of North America and Europe. Although they were amphibians, Seymouria were well-adapted to life on land, with many reptilian features—so many, in fact, that Seymouria was first thought to be a primitive reptile. It is primarily known from two species, Seymouria baylorensis and Seymouria sanjuanensis. The type species, S. baylorensis, is more robust and specialized, though its fossils have only been found in Texas. On the other hand, Seymouria sanjuanensis is more abundant and widespread. This smaller species is known from multiple well-preserved fossils, including a block of six skeletons found in the Cutler Formation of New Mexico, and a pair of fully grown skeletons from the Tambach Formation of Germany, which were fossilized lying next to each other.

<span class="mw-page-title-main">Parareptilia</span> Subclass of reptiles

Parareptilia ("near-reptiles") is a subclass or clade of basal sauropsids/reptiles, typically considered the sister taxon to Eureptilia. Parareptiles first arose near the end of the Carboniferous period and achieved their highest diversity during the Permian period. Several ecological innovations were first accomplished by parareptiles among reptiles. These include the first reptiles to return to marine ecosystems (mesosaurs), the first bipedal reptiles, the first reptiles with advanced hearing systems, and the first large herbivorous reptiles. The only parareptiles to survive into the Triassic period were the procolophonoids, a group of small generalists, omnivores, and herbivores. The largest family of procolophonoids, the procolophonids, rediversified in the Triassic, but subsequently declined and became extinct by the end of the period.

<span class="mw-page-title-main">Araeoscelidia</span> Extinct clade of reptiles

Araeoscelidia or Araeoscelida is a clade of extinct diapsid reptiles superficially resembling lizards, extending from the Late Carboniferous to the Early Permian. The group contains the genera Araeoscelis, Petrolacosaurus, the possibly aquatic Spinoaequalis, and less well-known genera such as Kadaliosaurus and Zarcasaurus. This clade is usually considered to be the sister group to all later diapsids.

<i>Captorhinus</i> Extinct genus of reptiles

Captorhinus is an extinct genus of captorhinid reptiles that lived during the Permian period. Its remains are known from North America and possibly South America.

<i>Labidosaurikos</i> Extinct genus of reptiles

Labidosaurikos is a genus of extinct captorhinid anapsid reptile that lived around 279 to 272 million years ago during Kungurian age of the lower Permian. The American paleontologist John Willis Stovall first described Labidosaurikos in 1950, naming it "Labidosaurus like" for the striking similarity of the holotype skull of his specimen to the cranial anatomy of another captorhinid Labidosaurus hamatus. Labidosaurus or generally called "lipped lizard" is another genus of the family Captorhinidae whose name is derived from the Greek for "forceps lizard" based on τσιμπίδα and σαυρος ("lizard")

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils. This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2011.

Gansurhinus is an extinct genus of moradisaurine captorhinid known from the Middle Permian Qingtoushan Formation of the Qilian Mountains and the Late Permian Naobaogou Formation in the Daqing Mountains of China. It was first named by Robert R. Reisz, Jun Liu, Jin-Ling Li and Johannes Müller in 2011 and the type species is Gansurhinus qingtoushanensis. A second species, Gansurhinus naobaogouensis, was described in 2023 based on a relatively complete skeleton of an immature individual.

Coelostegus is an extinct genus of Late Carboniferous basal reptile known from Pilsen of Czech Republic. It is known from the holotype ČGH 3027, a partial skeleton of an immature individual. It was collected in the Nýřany site from the Nýřany Member of the Kladno Formation. It was first named by Robert L. Carroll and Donald Baird in 1972 and the type species is Coelostegus prothales. The most recent phylogenic study of primitive reptile relationships found Coelostegus to be the basalmost known eureptile.

<i>Euconcordia</i> Extinct genus of reptiles

Euconcordia is an extinct genus of Late Carboniferous captorhinid known from Greenwood County, Kansas of the United States.

Thuringothyris is an extinct genus of Early Permian eureptiles known from the Thuringian Forest in central Germany.

<span class="mw-page-title-main">Pantestudines</span> Clade of reptiles

Pantestudines or Pan-Testudines is the group of all reptiles more closely related to turtles than to any other living animal. It includes both modern turtles and all of their extinct relatives. Pantestudines with a complete shell are placed in the clade Testudinata.

<span class="mw-page-title-main">Richards Spur</span> Permian fossil locality in Oklahoma

Richards Spur is a Permian fossil locality located at the Dolese Brothers Limestone Quarry north of Lawton, Oklahoma. The locality preserves clay and mudstone fissure fills of a karst system eroded out of Ordovician limestone and dolomite, with the infilling dating to the Artinskian stage of the early Permian (Cisuralian), around 289 to 286 million years ago. Fossils of terrestrial animals are abundant and well-preserved, representing one of the most diverse Paleozoic tetrapod communities known. A common historical name for the site is Fort Sill, in reference to the nearby military base. Fossils were first reported at the quarry by workers in 1932, spurring a wave of collecting by local and international geologists. Early taxa of interest included the abundant reptile Captorhinus and microsaurs such as Cardiocephalus and Euryodus. Later notable discoveries include Doleserpeton, the most diverse assortment of parareptiles in the Early Permian, and the rare early diapsid Orovenator.

<i>Moradisaurus</i> Extinct genus of large captorhinid reptile

Moradisaurus is an extinct genus of large captorhinid reptile, with a single species Moradisaurus grandis, known from the late Permian (Lopingian) aged Moradi Formation of Niger. It is the largest captorhinid known, estimated to have reached a snout-vent length of over two metres. Similar to other members of Moradisaurinae, it possessed multiple tooth rows, which is associated with a high-fiber herbivorous diet.

References

  1. Goodrich, E.S. (1916). "On the classification of the Reptilia". Proceedings of the Royal Society of London. 89B (615): 261–276. Bibcode:1916RSPSB..89..261G. doi:10.1098/rspb.1916.0012.
  2. Multiple tooth-rowed captorhinids from the early Permian fissure fills of the Bally Mountain Locality of Oklahoma
  3. Brocklehurst, Neil (2017-04-13). "Rates of morphological evolution in Captorhinidae: an adaptive radiation of Permian herbivores". PeerJ. 5: e3200. doi: 10.7717/peerj.3200 . ISSN   2167-8359. PMC   5392250 . PMID   28417061.
  4. LeBlanc, A. R. H.; MacDougall, M. J.; Haridy, Y.; Scott, D.; Reisz, R. R. (2018-03-05). "Caudal autotomy as anti-predatory behaviour in Palaeozoic reptiles". Scientific Reports. 8 (1): 3328. Bibcode:2018NatSR...8.3328L. doi:10.1038/s41598-018-21526-3. ISSN   2045-2322. PMC   5838224 . PMID   29507301.
  5. Muller, J. and Reisz, R.R. (2006). "The phylogeny of early eureptiles: Comparing parsimony and Bayesian approaches in the investigation of a basal fossil clade." Systematic Biology, 55(3):503-511. doi : 10.1080/10635150600755396
  6. 1 2 3 4 Robert R. Reisz; Jun Liu; Jin-Ling Li; Johannes Müller (2011). "A new captorhinid reptile, Gansurhinus qingtoushanensis, gen. et sp. nov., from the Permian of China". Naturwissenschaften. 98 (5): 435–441. Bibcode:2011NW.....98..435R. doi:10.1007/s00114-011-0793-0. PMID   21484260. S2CID   20274349.
  7. 1 2 Sumida, S.S.; Dodick, J.; Metcalf, A.; Albright, G. (2010). "Reiszorhinus olsoni, a new single-tooth-rowed captorhinid reptile of the Lower Permian of Texas". Journal of Vertebrate Paleontology. 30 (3): 704–714. Bibcode:2010JVPal..30..704S. doi:10.1080/02724631003758078. S2CID   31500853.
  8. Watson, D.M.S. (1914). "Eunotosaurus africanus Seeley and the ancestors of the Chelonia". Proceedings of the Zoological Society of London. 11: 1011–1020.
  9. "Facts About Turtles: Eunotosaurus And Turtle Evolution". All-About-Reptiles.com. Archived from the original on 12 September 2010. Retrieved 1 August 2010.
  10. Schoch, R. R.; Sues, H.-D. (2015). "A Middle Triassic stem-turtle and the evolution of the turtle body plan". Nature. 523 (7562): 584–587. Bibcode:2015Natur.523..584S. doi:10.1038/nature14472. PMID   26106865.
  11. Nor-Eddine Jalil; Jean-Michel Dutuit (1996). "Permian captorhinid reptiles from the Argana formation, Morocco" (PDF). Palaeontology. 39 (4): 907–918. Archived from the original (PDF) on 2012-04-25.
  12. W. J. May & Richard L. Cifelli (1998). "Baeotherates fortsillensis, A New Captorhinid Reptile from the Fort Sill Fissures, Lower Permian of Oklahoma". Oklahoma Geology Notes. 58: 128–137.
  13. 1 2 The Paleobiology Database: Moradisaurinae Archived 2011-10-04 at the Wayback Machine
  14. Jung, J. P.; Sues, H.-D. (2024). "Reassessment of 'Captorhinikos' chozaensis, an early Permian (Cisuralian: Kungurian) captorhinid reptile from Oklahoma and north-central Texas". Journal of Paleontology: 1–13. doi:10.1017/jpa.2023.85.
  15. Matamales-Andreu, R.; Mujal, E; Galobart, À; Fortuny, J (2023). "A new medium-sized moradisaurine captorhinid eureptile from the Permian of Mallorca (Balearic Islands, western Mediterranean) and correlation with the co-occurring ichnogenus Hyloidichnus". Papers in Palaeontology. 9 (3): e1498. doi:10.1002/spp2.1498.
  16. Simões, T. R.; Kammerer, C. F.; Caldwell, M. W.; Pierce, S. E. (2022). "Successive climate crises in the deep past drove the early evolution and radiation of reptiles". Science Advances. 8 (33): eabq1898. Bibcode:2022SciA....8.1898S. doi: 10.1126/sciadv.abq1898 . PMC   9390993 . PMID   35984885.
  17. Klembara, J.; Ruta, M.; Anderson, J.; Mayer, T.; Hain, M.; Valaška, D. (2023). "A review of Coelostegus prothales Carroll and Baird, 1972 from the Upper Carboniferous of the Czech Republic and the interrelationships of basal eureptiles". PLOS ONE. 18 (9): e0291687. Bibcode:2023PLoSO..1891687K. doi: 10.1371/journal.pone.0291687 . PMC   10513281 . PMID   37733816.