Kenyasaurus

Last updated

Kenyasaurus
Temporal range: Early Triassic 252–247  Ma
O
S
D
C
P
T
J
K
Pg
N
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Clade: Neodiapsida
Genus: Kenyasaurus
Harris & Carroll, 1977
Type species
Kenyasaurus mariakaniensis

Kenyasaurus is an extinct genus of basal tangasaurid known from the Early Triassic period of Coast Province, southeastern Kenya. It contains a single species, Kenyasaurus mariakaniensis. [1]

Contents

Discovery

Kenyasaurus is known only from the holotype specimen, KNM-MA1, a well preserved and partially complete postcranial skeleton, lacking much of the neck, pectoral girdle and forelimb, which is hosted at the Kenya National Museum. It was found at the Mariakani locality which is located 25 miles from Mombasa, southeastern Kenya. It was collected from the upper part of the Maji ya Chumvi Beds (Maji-Ya-Chumvi Formation). These beds form the lower part of the Middle Duruma Sandstone Series (Duruma Group) and on the basis of lithological similarities with beds in Tanzania and Madagascar were dated to the Induan and Olenekian stages of the Early Triassic period, about 251.0-245  million years ago. [1] This specimen represents the only reptilian fossils currently known from these beds. [2]

Description

Kenyasaurus is a relatively small, lightly built, general lizard-like form. In Kenyasaurus original description, Harris and Carroll (1977) assigned it to the "Eosuchia" (a defunct clade that used to unit all diapsids more advanced than Araeoscelis ) on the basis of its well developed sternum and that the fifth distal tarsal is not a separate element, but the fifth metatarsal is not hooked. It was considered to be most closely related to the aquatic eosuchians Tangasaurus and Hovasaurus (from Tanzania and Madagascar) based on its small size and general body proportions. Harris and Carroll noted that its tail is not specialized as a swimming organ as it is in tangasaurids. [1]

Philip J. Currie (1982) redescribed Tangasaurus and its relationships with other "eosuchians". He diagnosed Kenyasaurus on the basis of five autapomorphies: It possesses low but anteroposteriorly elongate neural spines in the dorsal region, 56 caudal vertebrae and 28 pairs of caudal ribs and transverse processes. Its astragalus is almost triangular rather than primitive L-shape and it has pronounced process on fifth metatarsal for insertion of peroneus brevis. [2] Currie (1982) united two subfamilies within the Tangasauridae: Kenyasaurinae (that he named to include Kenyasaurus and Thadeosaurus , both are thought to be terrestrial) and Tangasaurinae (to include the aquatic Tangasaurus and Hovasaurus). He allied Tangasauridae and Youngina together within superfamily Younginoidea which he named. Currie (1980) named Acerosodontosaurus , and allied it with Younginoidea in the clade Younginiformes. [2] Currie's (1982) classification of the Younginiformes had been accepted by many scientists [3] before they could perform large and computerized analyses.

More recent works that use phylogenetic analyses usually suggest that neither Younginoidea nor Younginiformes are monophyletic. [4] [5] Constanze Bickelmann, Johannes Müller and Robert R. Reisz (2009) redescribed Acerosodontosaurus and suggested an aquatic lifestyle for it. Their analysis is figured below, and it found support for two distinct families within "Younginiformes": the aquatic Tangasauridae, and the terrestrial Younginidae (in partial polytomy with Tangasauridae). However, they found no support for the inclusion of Kenyasaurus within any of those families. [4] More resolved results were obtained by Reisz et al. (2011) in their description of Orovenator . However, those results required the exclusion of the fragmentary taxa Galesphyrus , Kenyasaurus, Palaeagama and Saurosternon from their analysis. [5]

Diapsida

Etymology

Kenyasaurus was first described and named by John M. Harris and Robert L. Carroll in 1977 and the type species is Kenyasaurus mariakaniensis. The generic name is derived from the name of the Kenya in which the only known specimen was found, and Greek sauros, meaning "lizard". The specific name is derived from the name of the type locality of the genus, Mariakani. [1]

Related Research Articles

<span class="mw-page-title-main">Diapsid</span> Clade of amniote tetrapods with two holes in each side of their skulls

Diapsids are a clade of sauropsids, distinguished from more primitive eureptiles by the presence of two holes, known as temporal fenestrae, in each side of their skulls. The group first appeared about three hundred million years ago during the late Carboniferous period. All diapsids other than the most primitive ones in the clade Araeoscelidia are sometimes placed into the clade Neodiapsida. The diapsids are extremely diverse, and include birds and all modern reptile groups, including turtles, which were historically thought to lie outside the group. Although some diapsids have lost either one hole (lizards), or both holes, or have a heavily restructured skull, they are still classified as diapsids based on their ancestry. At least 17,084 species of diapsid animals are extant: 9,159 birds, and 7,925 snakes, lizards, tuatara, turtles, and crocodiles.

<span class="mw-page-title-main">Mesosaur</span> Extinct family of reptiles

Mesosaurs were a group of small aquatic reptiles that lived during the early Permian period (Cisuralian), roughly 299 to 270 million years ago. Mesosaurs were the first known aquatic reptiles, having apparently returned to an aquatic lifestyle from more terrestrial ancestors. It is uncertain which and how many terrestrial traits these ancestors displayed; recent research cannot establish with confidence if the first amniotes were fully terrestrial, or only amphibious. Most authors consider mesosaurs to have been aquatic, although adult animals may have been amphibious, rather than completely aquatic, as indicated by their moderate skeletal adaptations to a semiaquatic lifestyle. Similarly, their affinities are uncertain; they may have been among the most basal sauropsids or among the most basal parareptiles.

<span class="mw-page-title-main">Neodiapsida</span> Clade of reptiles

Neodiapsida is a clade, or major branch, of the reptilian family tree, typically defined as including all diapsids apart from some early primitive types known as the araeoscelidians. Modern reptiles and birds belong to the neodiapsid subclade Sauria.

<i>Youngina</i> Extinct genus of reptiles

Youngina is an extinct genus of diapsid reptile from the Late Permian Beaufort Group of the Karoo Red Beds of South Africa. This, and a few related forms, make up the family Younginidae, within the order Eosuchia. Eosuchia, having become a wastebasket taxon for many probably distantly-related primitive diapsid reptiles ranging from the Late Carboniferous to the Eocene, Romer proposed that it be replaced by Younginiformes.

<span class="mw-page-title-main">Captorhinidae</span> Extinct family of tetrapods

Captorhinidae is an extinct family of tetrapods, typically considered primitive reptiles, known from the late Carboniferous to the Late Permian. They had a cosmopolitan distribution across Pangea.

<i>Petrolacosaurus</i> Genus of tetrapods

Petrolacosaurus is an extinct genus of diapsid reptile from the late Carboniferous period. It was a small, 40-centimetre (16 in) long reptile, and one of the earliest known reptile with two temporal fenestrae. This means that it was at the base of Diapsida, the largest and most successful radiation of reptiles that would eventually include all modern reptile groups, as well as dinosaurs and other famous extinct reptiles such as plesiosaurs, ichthyosaurs, and pterosaurs. However, Petrolacosaurus itself was part of Araeoscelida, a short-lived early branch of the diapsid family tree which went extinct in the mid-Permian.

<i>Coelurosauravus</i> Extinct genus of reptiles

Coelurosauravus is an extinct genus of gliding reptile, known from the Late Permian of Madagascar. Like other members of the family Weigeltisauridae, members of this genus possessed long, rod-like ossifications projecting outwards from the body. These bony rods were not extensions of the ribs but were instead a feature unique to weigeltisaurids. It is believed that during life, these structures formed folding wings used for gliding flight, similar to living gliding Draco lizards.

<span class="mw-page-title-main">Eosuchia</span> Extinct order of reptiles

Eosuchians are an extinct order of diapsid reptiles. Depending on which taxa are included the order may have ranged from the late Carboniferous to the Eocene but the consensus is that eosuchians are confined to the Permian and Triassic.

<span class="mw-page-title-main">Younginiformes</span> Extinct group of reptiles

Younginiformes is a group of diapsid reptiles known from the Permian-Triassic of Africa and Madagascar. It has been used as a replacement for "Eosuchia". Younginiformes were historically suggested to be lepidosauromorphs, but were later suggested to be basal non-saurian neodiapsids. The group is sometimes divided into two families, Tangasauridae and Younginidae. The monophyly of the group is disputed. A 2009 study found them to be an unresolved polytomy at the base of Neodiapsida, while a 2011 study recovered the group as paraphyletic. A 2022 study recovered the Younginiformes as a monophyletic group of basal neodiapsid reptiles, also including Claudiosaurus and Saurosternon as part of the group. Some younginiforms like Hovasaurus and Acerosodontosaurus are thought to have had an amphibious lifestyle, while others like Kenyasaurus, Thadeosaurus and Youngina were probably terrestrial.

<i>Claudiosaurus</i> Extinct genus of reptiles

Claudiosaurus is an extinct genus of diapsid reptiles from the Late Permian Sakamena Formation of the Morondava Basin, Madagascar. It has been suggested to be semi-aquatic.

<i>Thadeosaurus</i> Extinct genus of reptiles

Thadeosaurus is an extinct genus of diapsid reptile belonging to the family Younginidae. Fossils have been found in the Lower Sakamena Formation of the Morondava Basin, Madagascar in 1981, and date to the late Permian to the early Triassic period.

<i>Hovasaurus</i> Extinct genus of reptiles

Hovasaurus is an extinct genus of basal diapsid reptile. It lived in what is now Madagascar during the Late Permian and Early Triassic, being a survivor of the Permian–Triassic extinction event and the paleontologically youngest member of the Tangasauridae. Fossils have been found in the Permian Lower and Triassic Middle Sakamena Formations of the Sakamena Group, where it is amongst the commonest fossils. Its morphology suggests an aquatic ecology.

<span class="mw-page-title-main">Drepanosaur</span> Extinct clade of reptiles

Drepanosaurs are a group of extinct reptiles that lived between the Carnian and Rhaetian stages of the late Triassic Period, approximately between 230 and 210 million years ago. The various species of drepanosaurid were characterized by specialized grasping limbs and often prehensile tails, adaptions for arboreal (tree-dwelling) and fossorial (digging) lifestyles, with some having also been suggested to be aquatic. Fossils of drepanosaurs have been found in Arizona, New Mexico, New Jersey, Utah, England, and northern Italy. The name is taken from the family's namesake genus Drepanosaurus, which means "sickle lizard," a reference to their strongly curved claws.

<i>Acerosodontosaurus</i> Extinct genus of reptiles

Acerosodontosaurus is an extinct genus of neodiapsid reptiles that lived during the Late Permian of Madagascar. The only species of Acerosodontosaurus, A. piveteaui, is known from a natural mold of a single partial skeleton including a crushed skull and part of the body and limbs. The fossil was discovered in deposits of the Lower Sakamena Formation. Based on skeletal characteristics, it has been suggested that Acerosodontosaurus individuals were at least partially aquatic.

<span class="mw-page-title-main">Tangasauridae</span> Extinct family of reptiles

Tangasauridae is an extinct family of diapsids known from fossil specimens from Madagascar, Kenya and Tanzania that are Late Permian to Early Triassic in age. Fossils have been found of numerous specimens of common members of this family such as Hovasaurus in different stages of ontogenic development. Recent material from the Middle Sakamena Formation of the Morondava Basin of Madagascar that dates back to the early Triassic period suggests that the Tangasauridae were relatively unaffected by the Permian-Triassic extinction event.

Hupehsuchia is an order of diapsid reptiles closely related to ichthyosaurs. The group was short-lasting, with a temporal range restricted to the late Olenekian age, spanning only a few million years of the Early Triassic. The order gets its name from Hubei Province, China, from which many specimens have been found. They are probable members of the clade Ichthyosauromorpha.

Tangasaurus is an extinct genus of aquatic basal tangasaurid neodiapsid known from the Late Permian period of Tanga, northeastern Tanzania. It contains a single species, Tangasaurus mennelli.

<span class="mw-page-title-main">Younginidae</span> Extinct family of reptiles

Younginidae is an extinct family of diapsid reptiles from the Late Permian and Early Triassic. In a phylogenetic context, younginids are near the base of the clade Neodiapsida. Younginidae includes the species Youngina capensis from the Late Permian of South Africa and Thadeosaurus colcanapi from the Late Permian and Early Triassic of Madagascar. Heleosuchus griesbachi from the Late Permian of South Africa may also be a member of the family.

<i>Cabarzia</i> Extinct genus of lizard-like animals

Cabarzia is an extinct genus of varanopid from the Early Permian of Germany. It contains only a single species, Cabarzia trostheidei, which is based on a well-preserved skeleton found in red beds of the Goldlauter Formation. Cabarzia shared many similarities with Mesenosaurus romeri, although it did retain some differences, such as more curved claws, a wide ulnare, and muscle scars on its sacral ribs. With long, slender hindlimbs, a narrow body, an elongated tail, and short, thick forelimbs, Cabarzia was likely capable of running bipedally to escape from predators, a behavior shared by some modern lizards. It is the oldest animal known to have adaptations for bipedal locomotion, predating Eudibamus, a bipedal bolosaurid parareptile from the slightly younger Tambach Formation.

References

  1. 1 2 3 4 Harris, John M.; Carroll, Robert L. (1977). "Kenyasaurus, a New Eosuchian Reptile from the Early Triassic of Kenya". Journal of Paleontology. 51 (1): 139–149. JSTOR   1303471.
  2. 1 2 3 Philip J. Currie (1982). "The osteology and relationships of Tangasaurus mennelli Haughton (Reptilia, Eosuchia)". Annals of the South African Museum. 86 (8): 247–265.
  3. Michael J. Benton (1985). "Classification and phylogeny of the diapsid reptiles". Zoological Journal of the Linnean Society. 84 (2): 97–164. doi:10.1111/j.1096-3642.1985.tb01796.x.
  4. 1 2 Constanze Bickelmann; Johannes Müller; Robert R. Reisz (2009). "The enigmatic diapsid Acerosodontosaurus piveteaui (Reptilia: Neodiapsida) from the Upper Permian of Madagascar and the paraphyly of younginiform reptiles". Canadian Journal of Earth Sciences. 49 (9): 651–661. Bibcode:2009CaJES..46..651S. doi:10.1139/E09-038.
  5. 1 2 Robert R. Reisz; Sean P. Modesto; Diane M. Scott (2011). "A new Early Permian reptile and its significance in early diapsid evolution". Proceedings of the Royal Society B. 278 (1725): 3731–3737. doi:10.1098/rspb.2011.0439. PMC   3203498 . PMID   21525061.