Reptiliomorpha

Last updated

Reptiliomorpha
Temporal range:
Mississippian Present, 340–0  Ma
Reptiliomorpha.pngArcheria crassidicaSeymouria sanjuanensisDinogorgon rubidgei
Diversity of clade Reptiliomorpha.

1st row (stem group): Archeria crassidica , Seymouria sanjuanensis ; 2nd row (Synapsida): Dinogorgon rubidgei , Loxodonta cyclotis ; 3rd row (Sauropsida/Reptilia): Ortygornis pondicerianus , Podarcis muralis .

Contents

Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Superclass: Tetrapoda
Clade: Reptiliomorpha
Säve-Söderbergh, 1934
Subgroups
Synonyms

Pan-Amniota Rowe, 2004 [1]

Reptiliomorpha (meaning reptile-shaped; in PhyloCode known as Pan-Amniota [2] [3] ) is a clade containing the amniotes and those tetrapods that share a more recent common ancestor with amniotes than with living amphibians (lissamphibians). It was defined by Michel Laurin (2001) and Vallin and Laurin (2004) as the largest clade that includes Homo sapiens , but not Ascaphus truei (tailed frog). [4] [5] Laurin and Reisz (2020) defined Pan-Amniota as the largest total clade containing Homo sapiens , but not Pipa pipa , Caecilia tentaculata , and Siren lacertina . [2] [3]

The informal variant of the name, "reptiliomorphs", is also occasionally used to refer to stem-amniotes, i.e. a grade of reptile-like tetrapods that are more closely related to amniotes than they are to lissamphibians, but are not amniotes themselves; the name is used in this meaning e.g. by Ruta, Coates and Quicke (2003). [6] An alternative name, " Anthracosauria ", is also commonly used for the group, but is confusingly also used for a more primitive grade of reptiliomorphs (Embolomeri) by Benton. [7] While both anthracosaurs and/or embolomeres are suggested to be reptiliomorphs closer to amniotes, some recent studies either retain them as amphibians or argue that their relationships are still ambiguous and are more likely to be stem-tetrapods. [8] [9] [10]

As the exact phylogenetic position of Lissamphibia within Tetrapoda remains uncertain, it also remains controversial which fossil tetrapods are more closely related to amniotes than to lissamphibians, and thus, which ones of them were reptiliomorphs in any meaning of the word. The two major hypotheses for lissamphibian origins are that they are either descendants of dissorophoid temnospondyls or microsaurian "lepospondyls". If the former (the "temnospondyl hypothesis") is true, then Reptiliomorpha includes all tetrapod groups that are closer to amniotes than to temnospondyls. These include the diadectomorphs, seymouriamorphs, most or all "lepospondyls", gephyrostegids, and possibly the embolomeres and chroniosuchians. [6] In addition, several "anthracosaur" genera of uncertain taxonomic placement would also probably qualify as reptiliomorphs, including Solenodonsaurus , Eldeceeon , Silvanerpeton , and Casineria . However, if lissamphibians originated among the lepospondyls according to the "lepospondyl hypothesis", then Reptiliomorpha refers to groups that are closer to amniotes than to lepospondyls. Few non-amniote groups would count as reptiliomorphs under this definition, although the diadectomorphs are among those that qualify. [11]

Changing definitions

The name Reptiliomorpha was coined by Professor Gunnar Säve-Söderbergh in 1934 to designate amniotes and various types of late Paleozoic tetrapods that were more closely related to amniotes than to living amphibians. In his view, the amphibians had evolved from fish twice, with one group composed of the ancestors of modern salamanders and the other, which Säve-Söderbergh referred to as Eutetrapoda, consisting of anurans (frogs), amniotes, and their ancestors, with the origin of caecilians being uncertain. Säve-Söderbergh's Eutetrapoda consisted of two sister-groups: Batrachomorpha, containing anurans and their ancestors, and Reptiliomorpha, containing anthracosaurs and amniotes. [12] Säve-Söderbergh subsequently added Seymouriamorpha to his Reptiliomorpha as well. [13]

Alfred Sherwood Romer rejected Säve-Söderbergh's theory of a biphyletic amphibia and used the name Anthracosauria to describe the "labyrinthodont" lineage from which amniotes evolved. In 1970, the German paleontologist Alec Panchen took up Säve-Söderbergh's name for this group as having priority, [14] but Romer's terminology is still in use, e.g. by Carroll (1988 and 2002) and by Hildebrand & Goslow (2001). [15] [16] [17] Some writers preferring phylogenetic nomenclature use Anthracosauria. [18]

In 1956, Friedrich von Huene included both amphibians and anapsid reptiles in the Reptiliomorpha. This included the following orders: Anthracosauria, Seymouriamorpha, Microsauria, Diadectomorpha, Procolophonia, Pareiasauria, Captorhinidia, Testudinata. [19]

Michael Benton (2000, 2004) made it the sister-clade to Lepospondyli, containing "anthracosaurs" (in the strict sense, i.e. Embolomeri), seymouriamorphs, diadectomorphs and amniotes. [7] Subsequently, Benton included lepospondyls in Reptiliomorpha as well. [20] However, when considered in a Linnean framework, Reptiliomorpha is given the rank of superorder and includes only reptile-like amphibians, not their amniote descendants. [21]

Several phylogenetic studies indicate that amniotes and diadectomorphs share a more recent common ancestor with lepospondyls than with seymouriamorphs, Gephyrostegus and Embolomeri (e.g. Laurin and Reisz, 1997, [22] 1999; [11] Ruta, Coates and Quicke, 2003; [6] Vallin and Laurin, 2004; [5] Ruta and Coates, 2007 [23] ). Lepospondyls are one of the groups of tetrapods suggested to be ancestors of living amphibians; as such, their potential close relationship to amniotes has important implications for the content of Reptiliomorpha. Assuming that lissamphibians aren't descended from lepospondyls but from a different group of tetrapods, e.g. from temnospondyls, [6] [23] [24] it would mean that Lepospondyli belonged to Reptiliomorpha sensu Laurin (2001), as it would make them more closely related to amniotes than to lissamphibians. On the other hand, if lissamphibians are descended from lepospondyls, [5] [22] [11] then not only Lepospondyli would have to be excluded from Reptiliomorpha, but seymouriamorphs, Gephyrostegus and Embolomeri would also have to be excluded from this group, as this would make them more distantly related to amniotes than living amphibians are. In that case, the clade Reptiliomorpha sensu Laurin would contain, apart from Amniota, only diadectomorphs and possibly also Solenodonsaurus . [5]

Characteristics

Gephyrostegids, seymouriamorphs and diadectomorphs were land-based, reptile-like amphibians, while embolomeres were aquatic amphibians with long body and short limbs. Their anatomy falls between the mainly aquatic Devonian labyrinthodonts and the first reptiles. University of Bristol paleontologist Professor Michael J. Benton gives the following characteristics for the Reptiliomorpha (in which he includes embolomeres, seymouriamorphs and diadectomorphs): [7]

Limnoscelis, a carnivorous diadectomorph Limnoscelis21DB.jpg
Limnoscelis , a carnivorous diadectomorph

Cranial morphology

The groups traditionally assigned to Reptiliomorpha, i.e. embolomeres, seymouriamorphs and diadectomorphs, differed from their contemporaries, the non-reptiliomorph temnospondyls, in having a deeper and taller skull, but retained the primitive kinesis (loose attachment) between the skull roof and the cheek (with exception of some specialized taxa, such as Seymouria , in which the cheek was solidly attached to the skull roof [25] ). The deeper skull allowed for laterally placed eyes, contrary to the dorsally placed eyes commonly found in amphibians. The skulls of the group are usually found with fine radiating grooves. The quadrate bone in the back of the skull held a deep otic notch, likely holding a spiracle rather than a tympanum. [26] [27]

Postcranial skeleton

Gephyrostegus, a small terrestrial tetrapod Gefyrostegus22DB.jpg
Gephyrostegus, a small terrestrial tetrapod

The vertebrae showed the typical multi-element construction seen in labyrinthodonts. According to Benton, in the vertebrae of "anthracosaurs" (i.e. Embolomeri) the intercentrum and pleurocentrum may be of equal size, while in the vertebrae of seymouriamorphs the pleurocentrum is the dominant element and the intercentrum is reduced to a small wedge. The intercentrum gets further reduced in the vertebrae of amniotes, where it becomes a thin plate or disappears altogether. [28] Unlike most labyrinthodonts, the body was moderately deep rather than flat, and the limbs were well-developed and ossified, indicating a predominantly terrestrial lifestyle except in secondarily aquatic groups. Each foot held five digits, the pattern seen in their amniote descendants. [29] They did, however, lack the reptilian type of ankle bone that would have allowed the use of the feet as levers for propulsion rather than as holdfasts. [30]

Physiology

Discosauriscus, a neotenic seymouriamorph Discos2gill.jpg
Discosauriscus , a neotenic seymouriamorph

The general build was heavy in all forms, though otherwise very similar to that of early reptiles. [31] The skin, at least in the more advanced forms probably had a water-tight epidermal horny overlay, similar to the one seen in today's reptiles, though they lacked horny claws. [32] [33] In chroniosuchians and some seymouriamorphs, like Discosauriscus , dermal scales are found in post-metamorphic specimens, indicating they may have had a "knobbly", if not scaly, appearance. [34] With reptiliomorph anthracosaurs having evolved small near-circular keratinous scales, their amniote descendants further covered almost their entire body with them, and also formed claws of keratin, with both scales and claws making cutaneous respiration and water absorption impossible, making them breathe through their mouths and nostrils, and drink water through mouth.

Seymouriamorphs reproduced in amphibian fashion with aquatic eggs that hatched into larvae (tadpoles) with external gills; [35] it is unknown how other tetrapods traditionally assigned to Reptiliomorpha reproduced.

Evolutionary history

Early reptiliomorphs

Archeria, an aquatic embolomere Archeria2DB.jpg
Archeria , an aquatic embolomere

During the Carboniferous and Permian periods, some tetrapods started to evolve towards a reptilian condition. Some of these tetrapods (e.g. Archeria , Eogyrinus ) were elongate, eel-like aquatic forms with diminutive limbs, while others (e.g. Seymouria , Solenodonsaurus , Diadectes , Limnoscelis ) were so reptile-like that until quite recently they actually had been considered to be true reptiles, and it is likely that to a modern observer they would have appeared as large to medium-sized, heavy-set lizards. Several groups however remained aquatic or semiaquatic. Some of the chroniosuchians show the build and presumably habits of modern crocodiles and were probably also similar to crocodylians in that they were river-side predators. While some other Chroniosuchians possessed elongated newt- or eel-like bodies. The two most terrestrially adapted groups were the medium-sized insectivorous or carnivorous Seymouriamorpha and the mainly herbivorous Diadectomorpha, with many large forms. The latter group has, in most analysis, the closest relatives of the Amniotes. [36]

From aquatic to terrestrial eggs

Seymouria, a terrestrial seymouriamorph Seymouria2.jpg
Seymouria , a terrestrial seymouriamorph

Their terrestrial life style combined with the need to return to the water to lay eggs hatching to larvae (tadpoles) led to a drive to abandon the larval stage and aquatic eggs. A possible reason may have been competition for breeding ponds, to exploit drier environments with less access to open water, or to avoid predation on tadpoles by fish, a problem still plaguing modern amphibians. [37] Whatever the reason, the drive led to internal fertilization and direct development (completing the tadpole stage within the egg). A striking parallel can be seen in the frog family Leptodactylidae, which has a very diverse reproductive system, including foam nests, non-feeding terrestrial tadpoles and direct development. The Diadectomorphans generally being large animals would have had correspondingly large eggs, unable to survive on land. [38]

Fully terrestrial life was achieved with the development of the amniote egg, where a number of membranous sacks protect the embryo and facilitate gas exchange between the egg and the atmosphere. The first to evolve was probably the allantois, a sack that develops from the gut/yolk-sack. This sack contains the embryo's nitrogenous waste (urea) during development, stopping it from poisoning the embryo. A very small allantois is found in modern amphibians. Later came the amnion surrounding the fetus proper, and the chorion, encompassing the amnion, allantois, and yolk-sack.

Origin of amniotes

Westlothiana, a small reptile-like tetrapod which may be an early lepospondyl, close to the origin of amniotes, or both Westlothiana BW.jpg
Westlothiana , a small reptile-like tetrapod which may be an early lepospondyl, close to the origin of amniotes, or both

Exactly where the border between reptile-like amphibians (non-amniote reptiliomorphs) and amniotes lies will probably never be known, as the reproductive structures involved fossilize poorly, but various small, advanced reptiliomorphs have been suggested as the first true amniotes, including Solenodonsaurus , Casineria and Westlothiana . Such small animals laid small eggs, 1 cm in diameter or less. Small eggs would have a small enough volume to surface ratio to be able to develop on land without the amnion and chorion actively effecting gas exchange, setting the stage for the evolution of true amniotic eggs. [38] Although the first true amniotes probably appeared as early as the Middle Mississippian sub-epoch, non-amniote (or amphibian) reptiliomorph lineages coexisted alongside their amniote descendants for many millions of years. By the middle Permian the non-amniote terrestrial forms had died out, but several aquatic non-amniote groups continued to the end of the Permian, and in the case of the chroniosuchians survived the end Permian mass extinction, only to die out prior to the end of the Triassic. Meanwhile, the single most successful daughter-clade of the reptiliomorphs, the amniotes, continued to flourish and evolve into a staggering diversity of tetrapods including mammals, reptiles, and birds.

See also

Related Research Articles

<span class="mw-page-title-main">Tetrapod</span> Superclass of the first four-limbed vertebrates and their descendants

A tetrapod is any four-limbed vertebrate animal of the superclass Tetrapoda. Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids and synapsids. Hox gene mutations have resulted in some tetrapods becoming limbless or two-limbed. Nevertheless, these limbless groups still qualify as tetrapods through their ancestry, and some retain a pair of vestigial spurs that are remnants of the hindlimbs.

<span class="mw-page-title-main">Amniote</span> Clade of tetrapods including reptiles, birds and mammals

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibious stem tetrapod ancestors during the Carboniferous period. Those of Amniota are defined as the smallest crown clade containing humans, the Greek tortoise, and the Nile crocodile.

<span class="mw-page-title-main">Batrachia</span> Clade of amphibians

The Batrachia are a clade of amphibians that includes frogs and salamanders, but not caecilians nor the extinct allocaudates. The name Batrachia was first used by French zoologist Pierre André Latreille in 1800 to refer to frogs, but has more recently been defined in a phylogenetic sense as a node-based taxon that includes the last common ancestor of frogs and salamanders and all of its descendants. The idea that frogs and salamanders are more closely related to each other than either is to caecilians is strongly supported by morphological and molecular evidence; they are, for instance, the only vertebrates able to raise and lower their eyes. However, an alternative hypothesis exists in which salamanders and caecilians are each other's closest relatives as part of a clade called the Procera, with frogs positioned as the sister taxon of this group.

<span class="mw-page-title-main">Labyrinthodontia</span> Paraphyletic group of tetrapodomorphs

"Labyrinthodontia" is an informal grouping of extinct predatory amphibians which were major components of ecosystems in the late Paleozoic and early Mesozoic eras. Traditionally considered a subclass of the class Amphibia, modern classification systems recognize that labyrinthodonts are not a formal natural group (clade) exclusive of other tetrapods. Instead, they consistute an evolutionary grade, ancestral to living tetrapods such as lissamphibians and amniotes. "Labyrinthodont"-grade vertebrates evolved from lobe-finned fishes in the Devonian, though a formal boundary between fish and amphibian is difficult to define at this point in time.

<span class="mw-page-title-main">Batrachomorpha</span> Clade of amphibians

The Batrachomorpha are a clade containing extant and extinct amphibians that are more closely related to modern amphibians than they are to mammals and reptiles. According to many analyses they include the extinct Temnospondyli; some show that they include the Lepospondyli instead. The name traditionally indicated a more limited group.

<span class="mw-page-title-main">Lepospondyli</span> Polyphyletic group of tetrapodomorphs

Lepospondyli is a diverse taxon of early tetrapods. With the exception of one late-surviving lepospondyl from the Late Permian of Morocco, lepospondyls lived from the Visean stage of the Early Carboniferous to the Early Permian and were geographically restricted to what is now Europe and North America. Five major groups of lepospondyls are known: Adelospondyli; Aïstopoda; Lysorophia; Microsauria; and Nectridea. Lepospondyls have a diverse range of body forms and include species with newt-like, eel- or snake-like, and lizard-like forms. Various species were aquatic, semiaquatic, or terrestrial. None were large, and they are assumed to have lived in specialized ecological niches not taken by the more numerous temnospondyl amphibians that coexisted with them in the Paleozoic. Lepospondyli was named in 1888 by Karl Alfred von Zittel, who coined the name to include some tetrapods from the Paleozoic that shared some specific characteristics in the notochord and teeth. Lepospondyls have sometimes been considered to be either related or ancestral to modern amphibians or to Amniota. It has been suggested that the grouping is polyphyletic, with aïstopods being primitive stem-tetrapods, while recumbirostran microsaurs are primitive reptiles.

<span class="mw-page-title-main">Anthracosauria</span> Paraphyletic group of tetrapodomorphs

Anthracosauria is an order of extinct reptile-like amphibians that flourished during the Carboniferous and early Permian periods, although precisely which species are included depends on one's definition of the taxon. "Anthracosauria" is sometimes used to refer to all tetrapods more closely related to amniotes such as reptiles, mammals, and birds, than to lissamphibians such as frogs and salamanders. An equivalent term to this definition would be Reptiliomorpha. Anthracosauria has also been used to refer to a smaller group of large, crocodilian-like aquatic tetrapods also known as embolomeres.

<span class="mw-page-title-main">Diadectomorpha</span> Extinct clade of tetrapods

Diadectomorpha is a clade of large tetrapods that lived in Euramerica during the Carboniferous and Early Permian periods and in Asia during Late Permian (Wuchiapingian), They have typically been classified as advanced reptiliomorphs positioned close to, but outside of the clade Amniota, though some recent research has recovered them as the sister group to the traditional Synapsida within Amniota, based on inner ear anatomy and cladistic analyses. They include both large carnivorous and even larger herbivorous forms, some semi-aquatic and others fully terrestrial. The diadectomorphs seem to have originated during late Mississippian times, although they only became common after the Carboniferous rainforest collapse and flourished during the Late Pennsylvanian and Early Permian periods.

<i>Seymouria</i> Extinct genus of tetrapodomorphs

Seymouria is an extinct genus of seymouriamorph from the Early Permian of North America and Europe. Although they were amphibians, Seymouria were well-adapted to life on land, with many reptilian features—so many, in fact, that Seymouria was first thought to be a primitive reptile. It is primarily known from two species, Seymouria baylorensis and Seymouria sanjuanensis. The type species, S. baylorensis, is more robust and specialized, though its fossils have only been found in Texas. On the other hand, S. sanjuanensis is more abundant and widespread. This smaller species is known from multiple well-preserved fossils, including a block of six skeletons found in the Cutler Formation of New Mexico, and a pair of fully grown skeletons from the Tambach Formation of Germany, which were fossilized lying next to each other.

<i>Westlothiana</i> Extinct genus of tetrapods

Westlothiana is a genus of reptile-like tetrapod that lived about 338 million years ago during the latest part of the Viséan age of the Carboniferous. The genus is known from a single species, Westlothiana lizziae. It is the oldest known uncontroversial tetrapod, closely related to but not an amniote.

<span class="mw-page-title-main">Seymouriamorpha</span> Extinct order of tetrapodomorphs

Seymouriamorpha were a small but widespread group of limbed vertebrates (tetrapods). They have long been considered stem-amniotes (reptiliomorphs), and most paleontologists still accept this point of view, but some analyses suggest that seymouriamorphs are stem-tetrapods.

<i>Casineria</i> Species of tetrapodomorph (fossil)

Casineria is an extinct genus of tetrapodomorph which lived about 340–334 million years ago in the Mississippian epoch of the Carboniferous period. Its generic name, Casineria, is a latinization of Cheese Bay, the site near Edinburgh, Scotland, where the holotype fossil was found. When originally described in 1999, it was identified as a transitional fossil noted for its mix of basal (amphibian-like) and advanced (reptile-like) characteristics, putting it at or very near the origin of the amniotes, the group containing all mammals, birds, modern reptiles, and other descendants of their reptile-like common ancestor. However, the sole known fossil is lacking key elements such as a skull, making exact analysis difficult. As a result, the classification of Casineria has been more controversial in analyses conducted since 1999. Other proposed affinities include a placement among the lepospondyls, seymouriamorphs, "gephyrostegids", or as a synonym of Caerorhachis, another controversial tetrapod which may have been an early temnospondyl.

<i>Tulerpeton</i> Extinct genus of tetrapodomorphs

Tulerpeton is an extinct genus of Devonian four-limbed vertebrate, known from a fossil that was found in the Tula Region of Russia at a site named Andreyevka. This genus and the closely related Acanthostega and Ichthyostega represent the earliest tetrapods.

<span class="mw-page-title-main">Embolomeri</span> Extinct order of tetrapods

Embolomeri is an order of tetrapods or stem-tetrapods, possibly members of Reptiliomorpha. Embolomeres first evolved in the Early Carboniferous (Mississippian) Period and were the largest and most successful predatory tetrapods of the Late Carboniferous (Pennsylvanian) Period. They were specialized semiaquatic predators with long bodies for eel-like undulatory swimming. Embolomeres are characterized by their vertebral centra, which are formed by two cylindrical segments, the pleurocentrum at the rear and intercentrum at the front. These segments are equal in size. Most other tetrapods have pleurocentra and intercentra which are drastically different in size and shape.

<i>Gephyrostegus</i> Extinct genus of reptile-like amphibians

Gephyrostegus is a genus of extinct gephyrostegid reptiliomorph amphibian. It was a small animal at 22 cm snout-vent length, of generally lizard-like build and presumably habit. It had large eyes and a large number of small, pointed teeth, indicating it was an active insectivorous hunter. The remains have been found in Nýřany, Czech Republic, dating from around 310 million years ago.

<i>Solenodonsaurus</i> Extinct genus of reptiles

Solenodonsaurus is an extinct genus of reptiliomorphs that lived in what is now Czech Republic, during the Westphalian stage.

<span class="mw-page-title-main">Chroniosuchia</span> Extinct order of tetrapods

Chroniosuchia is a group of tetrapods that lived from the Middle Permian to Late Triassic in what is now Eastern Europe, Kyrgyzstan, China and Germany. Chroniosuchians are often thought to be reptiliomorphs, but some recent phylogenetic analyses suggest instead that they are stem-tetrapods. They were all rather short limbed with a strong tail and elongated snout, somewhat resembling modern crocodiles. The group is traditionally considered to be a suborder or order of labyrinthodonts. Chroniosuchians likely had ecological niches as riverside predators, and may have been outcompeted by semiaquatic true reptiles such as phytosaurs in the late Triassic. Most forms bore a heavy armour of scutes along the back, possibly for protection against land born predators like therapsids, or to strengthen the axial skeleton for terrestrial locomotion. Indeed, femoral microanatomy of Chroniosaurus suggests that it was amphibious to terrestrial.

<i>Acherontiscus</i> Extinct genus of amphibians

Acherontiscus is an extinct genus of stegocephalians that lived in the Early Carboniferous of Scotland. The type and only species is Acherontiscus caledoniae, named by paleontologist Robert Carroll in 1969. Members of this genus have an unusual combination of features which makes their placement within amphibian-grade tetrapods uncertain. They possess multi-bone vertebrae similar to those of embolomeres, but also a skull similar to lepospondyls. The only known specimen of Acherontiscus possessed an elongated body similar to that of a snake or eel. No limbs were preserved, and evidence for their presence in close relatives of Acherontiscus is dubious at best. Phylogenetic analyses created by Marcello Ruta and other paleontologists in the 2000s indicate that Acherontiscus is part of Adelospondyli, closely related to other snake-like animals such as Adelogyrinus and Dolichopareias. Adelospondyls are traditionally placed within the group Lepospondyli due to their fused vertebrae. Some analyses published since 2007 have argued that adelospondyls such as Acherontiscus may not actually be lepospondyls, instead being close relatives or members of the family Colosteidae. This would indicate that they evolved prior to the split between the tetrapod lineage that leads to reptiles (Reptiliomorpha) and the one that leads to modern amphibians (Batrachomorpha). Members of this genus were probably aquatic animals that were able to swim using snake-like movements.

<span class="mw-page-title-main">Organ Rock Formation</span>

The Organ Rock Formation or Organ Rock Shale is a formation within the late Pennsylvanian to early Permian Cutler Group and is deposited across southeastern Utah, northwestern New Mexico, and northeastern Arizona. This formation notably outcrops around Canyonlands National Park, Natural Bridges National Monument, and Monument Valley of northeast Arizona, southern Utah. The age of the Organ Rock is constrained to the latter half of the Cisuralian epoch by age dates from overlying and underlying formations. Important early terrestrial vertebrate fossils have been recovered from this formation in northern Arizona, southern Utah, and northern New Mexico. These include the iconic Permian terrestrial fauna: Seymouria, Diadectes, Ophiacodon, and Dimetrodon. The fossil assemblage present suggests arid environmental conditions. This is corroborated with paleoclimate data indicative of global drying throughout the early Permian.

References

  1. Rowe, T. (2004). "Chordate phylogeny and development". Assembling the Tree of Life. J. Cracraft and M. J. Donoghue, eds. Oxford: Oxford University Press. pp. 384–409. ISBN   0-19-517234-5.
  2. 1 2 de Queiroz, K.; Cantino, P. D.; Gauthier, J. A., eds. (2020). "Pan-Amniota T. Rowe 2004 [M. Laurin and T. R. Smithson], converted clade name". Phylonyms: A Companion to the PhyloCode. Boca Raton: CRC Press. pp. 789–792. ISBN   978-1-138-33293-5.
  3. 1 2 "Pan-Amniota". RegNum.
  4. Laurin, M. (2001). "L'utilisation de la taxonomie phylogénétique en paléontologie: avantages et inconvénients". Biosystema. 19: 197–211.
  5. 1 2 3 4 Vallin, Grégoire; Laurin, Michel (2004). "Cranial morphology and affinities of Microbrachis, and a reappraisal of the phylogeny and lifestyle of the first amphibians". Journal of Vertebrate Paleontology. 24 (1): 56–72. doi:10.1671/5.1. S2CID   26700362.
  6. 1 2 3 4 Ruta, M.; Coates, M.I.; Quicke, D.L.J. (2003). "Early tetrapod relationships revisited". Biological Reviews. 78 (2): 251–345. doi:10.1017/S1464793102006103. PMID   12803423. S2CID   31298396.
  7. 1 2 3 Benton, M. J. (2000), Vertebrate Paleontology, 2nd Ed. Blackwell Science Ltd 3rd ed. 2004 – see also taxonomic hierarchy of the vertebrates, according to Benton 2004
  8. Hodnett, John-Paul M.; Lucas, Spencer G. (2018). "A nonmarine Late Pennsylvanian vertebrate assemblage in a marine bromalite from the Manzanita Mountains, Bernalillo County, New Mexico". New Mexico Museum of Natural History and Science Bulletin. 79: 251–260.
  9. Adams, Gabrielle R. (2020). "3. A phylogenetic analysis of NSM 994GF1.1 to determine the placement of embolomeres in the tetrapod tree". Description of Calligenethlon watsoni based on computed tomography and resulting implications for the phylogenetic placement of embolomeres (MSc thesis). Carleton University.
  10. Pardo, J. D. (2023). "New information on the neurocranium of Archeria crassidisca and the relationships of the Embolomeri". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad156.
  11. 1 2 3 Laurin, M.; Reisz, R.R. (1999). "A new study of Solenodonsaurus janenschi, and a reconsideration of amniote origins and stegocephalian evolution". Canadian Journal of Earth Sciences. 36 (8): 1239–1255. doi:10.1139/e99-036.
  12. Säve-Söderbergh, G. (1934). "Some points of view concerning the evolution of the vertebrates and the classification of this group". Arkiv för Zoologi. 26A: 1–20.
  13. Säve-Söderbergh, G. (1935). "On the dermal bones of the head in labyrinthodont stegocephalians and primitive Reptilia with special reference to Eotriassic stegocephalians from East Greenland". Meddelelser om Grønland . 98 (3): 1–211.
  14. Panchen, A. L. (1970). Handbuch der Paläoherpetologie - Encyclopedia of Paleoherpetology Part 5a - Batrachosauria (Anthracosauria), Gustav Fischer Verlag - Stuttgart & Portland, 83 pp., ISBN   3-89937-021-X.
  15. Carroll, R. L., (1988): Vertebrate paleontology and evolution. W. H. Freeman and company, New York.
  16. Carroll, R. (2002). "Palaeontology: Early land vertebrates". Nature . 418 (6893): 35–36. Bibcode:2002Natur.418...35C. doi: 10.1038/418035a . PMID   12097898. S2CID   5522292.
  17. Hildebrand, M.; Goslow, G. E. Jr (2001). Analysis of vertebrate structure. Principal ill. Viola Hildebrand. New York: Wiley. p. 429. ISBN   978-0-471-29505-1.
  18. Gauthier, J., Kluge, A.G., & Rowe, T. (1988): "The early evolution of the Amniota". In The Phylogeny and Classification of the Tetrapods: Volume 1: Amphibians, Reptiles, Birds. Edited by M.J. Benton. Clarendon Press, Oxford, pp. 103–155.
  19. Von Huene, F., (1956), Paläontologie und Phylogenie der niederen Tetrapoden, G. Fischer, Jena.
  20. Benton, M.J. (2015). "Appendix: Classification of the Vertebrates". Vertebrate Paleontology (4th ed.). Wiley Blackwell. 433–447. ISBN   978-1-118-40684-7.
  21. Systema Naturae (2000) / Classification Superorder Reptiliomorpha Archived 2006-02-27 at the Wayback Machine
  22. 1 2 Laurin, M.; Reisz, R.R. (1997). "A new perspective on tetrapod phylogeny". In Sumida, S.S.; Martin, K.L.M. (eds.). Amniote Origins: Completing the Transition to Land . Academic Press. pp.  9–60. ISBN   978-0-12-676460-4.
  23. 1 2 Ruta, M.; Coates, M.I. (2007). "Dates, nodes and character conflict: addressing the lissamphibian origin problem". Journal of Systematic Palaeontology. 5 (1): 69–122. doi:10.1017/S1477201906002008. S2CID   86479890.
  24. Hillary C. Maddin, Farish A. Jenkins Jr and Jason S. Anderson (2012). "The braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the origin of caecilians". PLOS ONE. 7 (12): e50743. Bibcode:2012PLoSO...750743M. doi: 10.1371/journal.pone.0050743 . PMC   3515621 . PMID   23227204.
  25. Carroll, R. L., (1988): Vertebrate paleontology and evolution. W. H. Freeman and company, New York, p. 167 and 169.
  26. Palaeos Reptilomorpha Archived April 9, 2005, at the Wayback Machine
  27. Lombard, R. Eric; Bolt, John R. (1979). "Evolution of the tetrapod ear: An analysis and reinterpretation". Biological Journal of the Linnean Society. 11: 19–76. doi:10.1111/j.1095-8312.1979.tb00027.x.
  28. Chapter 4: "The early tetrapods and amphibians." In: Benton, M. J. (2004), Vertebrate Paleontology, 3rd ed. Blackwell Science Ltd.
  29. Romer, A.S. & T.S. Parsons. 1977. The Vertebrate Body. 5th ed. Saunders, Philadelphia. (6th ed. 1985)
  30. Palaeos Reptilomorpha: Cotylosauria Archived 2005-07-28 at the Wayback Machine
  31. Romer, A. S. (1946). "The primitive reptile Limnoscelis restudied". American Journal of Science. 244 (3): 149–88. Bibcode:1946AmJS..244..149R. doi:10.2475/ajs.244.3.149.
  32. Smithson, T. R.; Paton, R. L.; Clack, J. A. (1999). "An amniote-like skeleton from the Early Carboniferous of Scotland". Nature. 398 (672 7): 508–13. Bibcode:1999Natur.398..508P. doi:10.1038/19071. S2CID   204992355.
  33. Maddin HC, Eckhart L, Jaeger K, Russell AP, Ghannadan M (April 2009). "The anatomy and development of the claws of Xenopus laevis (Lissamphibia: Anura) reveal alternate pathways of structural evolution in the integument of tetrapods". Journal of Anatomy. 214 (4): 607–19. doi:10.1111/j.1469-7580.2009.01052.x. PMC   2736125 . PMID   19422431.
  34. Laurin, Michel (1996). "A reevaluation of Ariekanerpeton, a Lower Permian seymouriamorph (Vertebrata: Seymouriamorpha) from Tadzhikistan". Journal of Vertebrate Paleontology. 16 (4): 653–65. doi:10.1080/02724634.1996.10011355. JSTOR   4523764.
  35. Špinar, Z. V. (1952). "Revision of some Morovian Discosauriscidae". Rozpravy Ústředního ústavu Geologického. 15: 1–160. OCLC   715519162.
  36. Laurin, M. (1996): Phylogeny of Stegocephalians, from the Tree of Life Web Project
  37. Duellman, W.E. & Trueb, L. (1994): Biology of amphibians. The Johns Hopkins University Press
  38. 1 2 Carroll R.L. (1991). "The origin of reptiles". In Schultze H.-P.; Trueb L. (eds.). Origins of the higher groups of tetrapods — controversy and consensus. Ithaca: Cornell University Press. pp. 331–53.