A grade is a taxon united by a level of morphological or physiological complexity. The term was coined by British biologist Julian Huxley, to contrast with clade, a strictly phylogenetic unit. [1]
The concept of evolutionary grades arises in the context of phylogenetics: the study of the evolutionary history and relationships among or within groups of organisms. These relationships are determined by phylogenetic inference methods that focus on observed heritable traits, such as DNA sequences, protein amino acid sequences, or morphology. The result of such an analysis is a phylogenetic tree—a diagram containing a hypothesis of relationships that reflects the evolutionary history of a group of organisms. [2]
An evolutionary grade is a group of species united by morphological or physiological traits, that has given rise to another group that has major differences from the ancestral group's condition, and is thus not considered part of the ancestral group, while still having enough similarities that we can group them under the same clade.[ clarification needed ] The ancestral group will not be phylogenetically complete (i.e. is not a clade), and so will represent a paraphyletic taxon.[ citation needed ]
The most commonly cited example is that of reptiles. In the early 19th century, the French naturalist Latreille was the first to divide tetrapods into the four familiar classes of amphibians, reptiles, birds, and mammals. [3] In this system, reptiles are characterized by traits such as laying membranous or shelled eggs, having skin covered in scales or scutes, and having a 'cold-blooded' metabolism. However, the ancestors of mammals and birds also had these traits and so birds and mammals can be said to "have evolved from reptiles", making the reptiles, when defined by these traits, a grade rather than a clade. [4] In microbiology, taxa that are thus seen as excluded from their evolutionary grade parent group are called taxa in disguise. [5]
Paraphyletic taxa will often, but not always, represent evolutionary grades. In some cases paraphyletic taxa are united simply by not being part of any other groups, and give rise to so-called wastebasket taxa which may even be polyphyletic.
The traditional Linnaean way of defining taxa is through the use of anatomical traits. When the actual phylogenetic relationship is unknown, well defined groups sometimes turn out to be defined by traits that are primitive rather than derived. In Linnaean systematics, evolutionary grades are accepted in higher taxonomic ranks, though generally avoided at family level and below. In phylogenetic nomenclature evolutionary grades (or any other form of paraphyly) are not accepted. [6]
Where information about phylogenetic relationships is available, organisms are preferentially grouped into clades. Where data is lacking, or groups of uncertain relationship are to be compared, the cladistic method is limited and grade provides a useful tool for comparing organisms. This is particularly common in palaeontology, where fossils are often fragmentary and difficult to interpret. Thus, traditional palaeontological works are often using evolutionary grades as formal or informal taxa, including examples such as labyrinthodonts, anapsids, synapsids, dinosaurs, ammonites, eurypterids, lobopodians and many of the more well known taxa of human evolution. Organizing organisms into grades rather than strict clades can also be very useful to understand the evolutionary sequence behind major diversification of both animals [7] and plants. [8]
Evolutionary grades, being united by gross morphological traits, are often eminently recognizable in the field. While taxonomy seeks to eliminate paraphyletic taxa, such grades are sometimes kept as formal or informal groups on the basis of their usefulness for laymen and field researchers. [6] In bacteriology, the renaming of species or groups that turn out to be evolutionary grades is kept to a minimum to avoid misunderstanding, which in the case of pathogens could have fatal consequences. When referring to a group of organisms, the term "grade" is usually enclosed in quotation marks to denote its status as a paraphyletic term.
With the rise of phylogenetic nomenclature, the use of evolutionary grades as formal taxa has come under debate. Under a strict phylogenetic approach, only monophyletic taxa are recognized. [9] This differs from the more traditional approach of evolutionary taxonomy. [10] The difference in approach has led to a vigorous debate between proponents of the two approaches to taxonomy, particularly in well established fields like vertebrate palaeontology and botany. [11] The difference between the statement "B is part of A" (phylogenetic approach) and "B has evolved from A" (evolutionary approach) is, however, one of semantics rather than of phylogeny. Both express the same phylogeny, but the former emphasizes the phylogenetic continuum while the latter emphasizes a distinct shift in anatomy or ecology in B relative to A.
Cladistics is an approach to biological classification in which organisms are categorized in groups ("clades") based on hypotheses of most recent common ancestry. The evidence for hypothesized relationships is typically shared derived characteristics (synapomorphies) that are not present in more distant groups and ancestors. However, from an empirical perspective, common ancestors are inferences based on a cladistic hypothesis of relationships of taxa whose character states can be observed. Theoretically, a last common ancestor and all its descendants constitute a (minimal) clade. Importantly, all descendants stay in their overarching ancestral clade. For example, if the terms worms or fishes were used within a strict cladistic framework, these terms would include humans. Many of these terms are normally used paraphyletically, outside of cladistics, e.g. as a 'grade', which are fruitless to precisely delineate, especially when including extinct species. Radiation results in the generation of new subclades by bifurcation, but in practice sexual hybridization may blur very closely related groupings.
In biological phylogenetics, a clade, also known as a monophyletic group or natural group, is a grouping of organisms that are monophyletic – that is, composed of a common ancestor and all its lineal descendants – on a phylogenetic tree. In the taxonomical literature, sometimes the Latin form cladus is used rather than the English form. Clades are the fundamental unit of cladistics, a modern approach to taxonomy adopted by most biological fields.
In biology, phenetics, also known as taximetrics, is an attempt to classify organisms based on overall similarity, usually with respect to morphology or other observable traits, regardless of their phylogeny or evolutionary relation. It is related closely to numerical taxonomy which is concerned with the use of numerical methods for taxonomic classification. Many people contributed to the development of phenetics, but the most influential were Peter Sneath and Robert R. Sokal. Their books are still primary references for this sub-discipline, although now out of print.
Paraphyly is a taxonomic term describing a grouping that consists of the grouping's last common ancestor and some but not all of its descendant lineages. The grouping is said to be paraphyletic with respect to the excluded subgroups. In contrast, a monophyletic grouping includes a common ancestor and all of its descendants.
An anapsid is an amniote whose skull lacks one or more skull openings near the temples. Traditionally, the Anapsida are considered the most primitive subclass of amniotes, the ancestral stock from which Synapsida and Diapsida evolved, making anapsids paraphyletic. It is, however, doubtful that all anapsids lack temporal fenestra as a primitive trait, and that all the groups traditionally seen as anapsids truly lacked fenestra.
In biology, a taxon is a group of one or more populations of an organism or organisms seen by taxonomists to form a unit. Although neither is required, a taxon is usually known by a particular name and given a particular ranking, especially if and when it is accepted or becomes established. It is very common, however, for taxonomists to remain at odds over what belongs to a taxon and the criteria used for inclusion, especially in the context of rank-based ("Linnaean") nomenclature. If a taxon is given a formal scientific name, its use is then governed by one of the nomenclature codes specifying which scientific name is correct for a particular grouping.
Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibious stem tetrapod ancestors during the Carboniferous period. Those of Amniota are defined as the smallest crown clade containing humans, the Greek tortoise, and the Nile crocodile.
Diapsids are a clade of sauropsids, distinguished from more primitive eureptiles by the presence of two holes, known as temporal fenestrae, in each side of their skulls. The earliest traditionally identified diapsids, the araeoscelidians, appeared about three hundred million years ago during the late Carboniferous period. All diapsids other than the most primitive ones in the clade Araeoscelidia are often placed into the clade Neodiapsida. The diapsids are extremely diverse, and include birds and all modern reptile groups, including turtles, which were historically thought to lie outside the group. All modern reptiles and birds are placed within the neodiapsid subclade Sauria. Although some diapsids have lost either one hole (lizards), or both holes, or have a heavily restructured skull, they are still classified as diapsids based on their ancestry. At least 17,084 species of diapsid animals are extant: 9,159 birds, and 7,925 snakes, lizards, tuatara, turtles, and crocodilians.
Sauropsida is a clade of amniotes, broadly equivalent to the class Reptilia, though typically used in a broader sense to also include extinct stem-group relatives of modern reptiles and birds. The most popular definition states that Sauropsida is the sibling taxon to Synapsida, the other clade of amniotes which includes mammals as its only modern representatives. Although early synapsids have historically been referred to as "mammal-like reptiles", all synapsids are more closely related to mammals than to any modern reptile. Sauropsids, on the other hand, include all amniotes more closely related to modern reptiles than to mammals. This includes Aves (birds), which are recognized as a subgroup of archosaurian reptiles despite originally being named as a separate class in Linnaean taxonomy.
Archosauria or archosaurs is a clade of diapsid sauropsid tetrapods, with birds and crocodilians being the only extant representatives. Although broadly classified as reptiles, which traditionally exclude birds, the cladistic sense of the term includes all living and extinct relatives of birds and crocodilians such as non-avian dinosaurs, pterosaurs, phytosaurs, aetosaurs and rauisuchians as well as many Mesozoic marine reptiles. Modern paleontologists define Archosauria as a crown group that includes the most recent common ancestor of living birds and crocodilians, and all of its descendants.
Evolutionary taxonomy, evolutionary systematics or Darwinian classification is a branch of biological classification that seeks to classify organisms using a combination of phylogenetic relationship, progenitor-descendant relationship, and degree of evolutionary change. This type of taxonomy may consider whole taxa rather than single species, so that groups of species can be inferred as giving rise to new groups. The concept found its most well-known form in the modern evolutionary synthesis of the early 1940s.
In phylogenetics, the crown group or crown assemblage is a collection of species composed of the living representatives of the collection, the most recent common ancestor of the collection, and all descendants of the most recent common ancestor. It is thus a way of defining a clade, a group consisting of a species and all its extant or extinct descendants. For example, Neornithes (birds) can be defined as a crown group, which includes the most recent common ancestor of all modern birds, and all of its extant or extinct descendants.
Archosauriformes is a clade of diapsid reptiles encompassing archosaurs and some of their close relatives. It was defined by Jacques Gauthier (1994) as the clade stemming from the last common ancestor of Proterosuchidae and Archosauria. Phil Senter (2005) defined it as the most exclusive clade containing Proterosuchus and Archosauria. Gauthier as part of the Phylonyms (2020) defined the clade as the last common ancestor and all descendants of Gallus, Alligator, and Proterosuchus. Archosauriforms are a branch of archosauromorphs which originated in the Late Permian and persist to the present day as the two surviving archosaur groups: crocodilians and birds.
"Rauisuchia" is a paraphyletic group of mostly large and carnivorous Triassic archosaurs. Rauisuchians are a category of archosaurs within a larger group called Pseudosuchia, which encompasses all archosaurs more closely related to crocodilians than to birds and other dinosaurs. First named in the 1940s, Rauisuchia was a name exclusive to Triassic archosaurs which were generally large, carnivorous, and quadrupedal with a pillar-erect hip posture, though exceptions exist for all of these traits. Rauisuchians, as a traditional taxonomic group, were considered distinct from other Triassic archosaur groups such as early dinosaurs, phytosaurs, aetosaurs, and crocodylomorphs.
Wastebasket taxon is a term used by some taxonomists to refer to a taxon that has the purpose of classifying organisms that do not fit anywhere else. They are typically defined by either their designated members' often superficial similarity to each other, or their lack of one or more distinct character states or by their not belonging to one or more other taxa. Wastebasket taxa are by definition either paraphyletic or polyphyletic, and are therefore not considered valid taxa under strict cladistic rules of taxonomy. The name of a wastebasket taxon may in some cases be retained as the designation of an evolutionary grade, however.
In phylogenetics, a sister group or sister taxon, also called an adelphotaxon, comprises the closest relative(s) of another given unit in an evolutionary tree.
In phylogenetics, a plesiomorphy and symplesiomorphy are synonyms for an ancestral character shared by all members of a clade, which does not distinguish the clade from other clades.
Phylogenetic nomenclature is a method of nomenclature for taxa in biology that uses phylogenetic definitions for taxon names as explained below. This contrasts with the traditional method, by which taxon names are defined by a type, which can be a specimen or a taxon of lower rank, and a description in words. Phylogenetic nomenclature is regulated currently by the International Code of Phylogenetic Nomenclature (PhyloCode).
Reptiles arose about 320 million years ago during the Carboniferous period. Reptiles, in the traditional sense of the term, are defined as animals that have scales or scutes, lay land-based hard-shelled eggs, and possess ectothermic metabolisms. So defined, the group is paraphyletic, excluding endothermic animals like birds that are descended from early traditionally-defined reptiles. A definition in accordance with phylogenetic nomenclature, which rejects paraphyletic groups, includes birds while excluding mammals and their synapsid ancestors. So defined, Reptilia is identical to Sauropsida.
The following outline is provided as an overview of and topical guide to evolution:
{{cite journal}}
: CS1 maint: unfit URL (link)